BUILD A MULTIPLAYER LED RACING GAME

The 40-channel Cobra 29XLR. From the sleek brushed chrome face to the matte black housing, it's a beauty. But its beauty is more than skin deep. Because inside, this CB has the guts to pack a powerful punch.

The illuminated 3-in-1 meter tells you exactly how much power you're pushing out. And pulling in. It also measures the system's efficiency with an SWR check. In short, this Cobra's meter lets you keep an eye on your ears.

The Digital Channel Selector shows you the channel you're on in large LED numerals that can be read clearly in any light. There's also switchable noise blanking to reject short-pulse noise other systems can't block. The built-in power of DynaMike Plus. Automatic noise limiting
and Delta Tuning for clearer reception.
And the added protection of Cobra's nationwide network of Authorized Service Centers with factory-trained technicians to help you with installation, service and advice.

The Cobra 29XLR. It has 40 channels. And it has what it takes to improve communications by punching through loud and clear on every one of them. That's the beauty of it

Punches through loud and clear.
Cobra Communications Products DYNASCAN CORPORATION
6460 W. Cortland St., Chicago, Illinois 60635 Write for color brochure
EXPORTERS: Empire • Piannew, N.Y • CANADA: Atlas Electroncs • Tononto CIRCLE NO. 15 ON FREE INFORMATION CARD

PUNCH AND BEAUTY

ANNOUNCING THREE NEW BREAKTHROUGHS IN SOLDERLESS BREADBOARDING.

Whether you design or build circuits for fun or for profit, you owe it to yourself to discover how fast and easy CSC solderless breadboarding can be. Now, more than ever. Because of three new breakthroughs in breadboard design. And our new EXPERIMENTOR ${ }^{\text {M }}$ sockets* ${ }^{\star \star}$ that make the most of them.

1. Price Who says a quality breadboard has to be expensive? For as little as $\$ 9.95$, CSC's EXPERIMENTOR sockets let you design, assemble and modify circuits as fast as you can push in-or pull outcomiponent leads. On a rugged one-piece socket with 550 solderless tie-points (94 five-point terminals and two 40-point bus strips).

Sockets lock together, snap apart to handle any size circuit with ease.
But don't let the low price fool you: EXPERIMENTOR sockets are precision-molded of durable, abra-sion-resistant material, and feature CSC's non-corrosive, prestressed nickel-silver contacts for positive connections and longer life. All contacts are identified, too ...with molded-in designations for easier circuit assembly and diagramming.

2. Compatibility CSC

EXPERIMENTOR sockets end the "big-chip blues." They're the only ones with full fan-out capabilities for microprocessors and other larger DIP's, as well as $4-16$-pin units. EX-
位 is ideal for microprocessor's, clock chips, RAM's, ROM's, PROM's, etc. While EXPERIMENTOR 300's smaller $3 / 10^{\prime \prime}$ center is perfect for smaller DIP's. Both units, of course, accept transistors, LED's, resistors, capacitors, pot's-virtually all types of components with plug-in ease. As well as \#22-30 solid hook-up wire for interconnections. Eliminating heat and lead damage to expensive components. And saving you more money, on parts.

3. Flexibility with CSC EXPERIMENTOR sockets, you can arrange your breadboard to suit your circuit...instead of vice versa. An exclusive snap-together inter-
locking system lets you instantly connect them. Vertically or horizontally. So you can mix or match 3/10 and 6/10" centers...expanding or contracting to meet your requirements.

CSC EXPERIMENTOR sockets can be used alone, or mounted on any convenient flat surface, thanks to molded-in mounting holes and vinyl insulation backing that prevents shorts. You can mount them with 4-40 flat-head screws from the front, or 6-32 self-tapping screws, from the rear. But however you use them, EXPERIMENTOR sockets are an unbeatable way to build and test twice the projects in halt the time.

Both models feature 94 five-point
terminals (vertical lines) and two
48 -point bus strips (one strip shown).
WHY WAIT? CSC EXPERIMENTOR sockets are available now from your CSC dealer, or by phone from CSC, at $\$ 9.95^{*}$ for the 300 and $\$ 10.95^{*}$ for the 600. Call 203-6243103 (East Coast) or 415-421-8872 (West Coast)-major credit cards are accepted.
*Manufacturer's suggested list price. Prices subject to change without notice. US Pat No D235.554 CONTINENTAL SPECIALTIES CORPORATON

44 Kendall Street, Box 1942, New Haven, Ct 06509
203-624-3103/TWX: 710-465-1227

Convenience is only half the story.

SBE TOUCH/COM 40

SBE adds the ultimate luxury to 40 -channel operation: the convenience of microphone control that puls all CB functions right in the palm of your hand. Quickly scan up or down through all 40 channels. or move channel by chanmel with the 2 -speed channel selector. Identity your channel with the extra-large. high-intensity LED readout. clearly visible even in bright daylight. Adjust volume and squelch with the flick of a finger. And to transmit, simply push the "Press-to-Talk" control. It's all on the microphone.
But the convenience of TOUCH/COM 40 is only half the story. With such sophisticated features as SBE's "Speech Spander" voiceoperated modulation level control. "Anti-Blast" audio burst protection circuit. 4-pole IF filter. delta tune. and MIC gain control. Touch/Com 40 offers top performance under the toughest operating conditions. plus dependability backed by 100 per cent quality control.
And that's the half of the story that is the most important to you.

For complete information, visit your nearest SBEDealer, or write SBE. Inc. 220 Airport Blvd., Watsonville. CA 95076

FEATURE ARTICLES

COSMAC "ELF" MICROCOMPUTER Joseph Wiesbecker 63Part 3-Programs and memory expansion.CLASSES OF AUDIO AMPLIFIERSLen Feldman 74
What the various types mean to today's audio.............
ENGLISH-LANGUAGE SHORTWAVE BROADCASTS FOR MAR. \& APR. Richard E. Wood 103
OPERATIONAL AMPLIFIER QUIZ William E. Parker 111
CONSTRUCTION ARTICLES
BUILD A DIGITAL BICYCLE-SPEEDOMETER George W. Randig 39
BUILD THE V-4 VCO FOR ELECTRONIC MUSIC James Barbarello 42
Generates sine, triangle, and square waves and pulse outputs.
BUILD A $10-\mathrm{Hz}$ TO 1-MHz EPUT METER John F. Hollabaugh 68
Inexpensive events per unit time instrument.
MULTIPLAYER LED RACING GAME W. J. Prudhomme 77
Use skill and chance in the game of "Strategy."
SPECIAL FOCUS ON CB RADIO
CB RULES CHANGES FOR 1977 45
PROS AND CONS OF CB FREQUENCY-GENERATION METHODS Wilfred M. Scherer 46
WILL SUNSPOTS AFFECT CB COMMUNICATIONS? . Stanley Leinwoll 51
BUILD A SILENCER Roland Miles 57
Squelches operating radio or tape player when CB signal begins.
COLUMNS
STEREO SCENE Ralph Hodges 20
The House That Hi-Fi Buith.
Lou Garner 86
Tachometer-Speed Switches.
EXPERIMENTER'S CORNER Forrest M. Mims 96
HOBBY SCENE Q\&A John J. McVeigh 99
DX LISTENING Glenn-Hauser 102
The Soviet Pulser.
COMPUTER BITS Hal Chamberlin 107
Memory Testing. "
JULIAN HIRSCH AUDIO REPORTS
MEASURING AND INTERPRETING TURNTABLE RUMBLE 24
EMPIRE MODEL 698 RECORD PLAYER 26
SHERWOOD MODEL S-7910 STEREO RECEIVER 29
ELECTRONIC PRODUCT TEST REPORTS
OK MODEL WSU-30 WIRE-WRAP TOOL 100
BALLANTINE MODEL 1010A OSCILLOSCOPE 101
DEPARTMENTS
EDITORIAL Art Salsberg 4
Ma Bell Stalls.
LETTERS 6
NEW PRODUCTS 8
NEW LITERATURE 16
NEWS HIGHLIGHTS 32
OPERATION ASSIST 112
ELECTRONICS LIBRARY 114

POPULAR ELECTRONICS, March 1977, Volume 11, Number 3, Published monthly at One Park Avenue, New York, NY 10016. One year subscription rate for U.S., \$9.98; U.S. Possessions and Canada, \$12.98; all other countries, $\$ 14.98$ (cash orders only, payable in U.S. currency). Second Class postage paid at New York, NY and at additional mailing offices. Authorized as second class maii by the Post Otlice Department, Ottawa, Canada, and for payment of postage in cash.

POPULAR ELECTRONICS including ELECTRONICS WORLD. Trade Mark Registered. Indexed in the Reader's Guide to Periodical Literature.
COPYRIGHT 1977 BY ZIFF-DAVIS PUBLISHING COMPANY. ALL RIGHTS RESERVED.
Zitt-Davis also publishes Boating, Car and Driver, Cycle, Flying, Modern Bride, Popular Photography. Skiing and Stereo Review.

Materal in this publication may not be reproduced in any form without permission. Requests for permission should be directed to Jerry Schneider, Rights and Permissions, Zitt-Davis Publishing Co., One Park Ave., New York, NY 10016.

Editorial correspondence: POPULAR ELECTRONICS. \& Park Ave., New York, NY 10016. Editorial contributions must be accompanied by return postage and will be handled with reasonable care; however, publisher assumes no responsibility for return or safety of manuscripts, art work, or models.

Forms 3579 and all subscription correspondence: POPULAR ELECTRONICS, Circulation Dept., P.O. Box 2774, Boulder, CO 80302. Please allow at least eight weeks for change of address. Include your old address, enclosing. if possible, an address label from a recent issue.

Popular Electronics

EDGAR W. HOPPER
Publisher

Midwestern Office
The Pattis Group. 4761 West Touhy Ave., Lincolnwood. Illinois 60644. 312 679-1100 GERALD E. WOLFE, THOMAS HOCKNEY Western Office
9025 Wilshire Boulevard, Beverly Hills, CA 90211 213 273-8050: BRadshaw 2-1161
Western Advertising Manager, BUD DEAN Japan: James Yagı
Oji Palace Aoyama: 6-25, Minami Aoyama 6 Chome. Minato-Ku. Tokyo 407-1930/6821

Member Audit Burres
The publisher has no knowledge of any proprietary rights which will be violated by the making or using of any items disclosed in this issue.

Editorial

MA BELL STALLS

Last March I happily noted here that the FCC had finally bypassed AT\&T and its local telephone companies by permitting end users to install interconnect equipment to Ma Bell's lines without necessarily renting an interconnect modem. The FCC's Docket No. 19528 prescribed a free, simple registration program and technical requirements for making one's own inexpensive interface.

I concluded this column with a farewell to acoustic couplers and an invitation to authors to resubmit those hard-wire telephone projects that we had formerly rejected. Unfortunately, Ma Bell's legal eagles have been running it all through the courts since then, with one challenge after another. Thus far, all court decisions have upheld the FCC decision and its power to make it.

At this writing, though, Bell is before the U.S. Court of Appeals, persisting in its claim that customer-owned equipment must be interfaced only with a device rented from Bell to prevent damage to its lines from faulty equipment. Thus, project builders of equipment that uses telephone lines cannot yet legally bypass renting an interface device with full confidence for the future. This may not be of any consequence to independent suppliers of telephone equipment that connects to Bell's lines or to large businesses, but to electronics hobbyists it means that there is still a monthly rental charge for a dinky little circuit that will cost them, say, \$60 per year.

The FCC certification program for privately owned interface devices, which included issuance of an FCC registration number that would be sent by the user to the local telephone company for information purposes only, was wise and long overdue. We all thought, in our innocence, that this capped the 1968 FCC decision that permitted phone equipment to be purchased from suppliers rather than rented from Bell. The FCC observed last year that the Carterfone Decision placed the burden of proof of harm to telephone installations by interconnect equipment upon the carrier, not the users. It's hoped here that the Appeals Court will share this view.

It might seem strange to many people that independent suppliers of telephone equipment can sell phone gear that's more sophisticated than Bell's standard equipment at enormous savings to businesses with, say, six or more telephones.

The free enterprise system is what makes it happen. Bell has to charge businesses more money in order to make up for losses it sustains to support residential service, some of which is very unprofitable. Outside suppliers, on the other hand, don't have to run phone lines to the boondocks; they can focus on a single area and, as they have proved, whip Bell at every turn. Furthermore, the company enjoys a 10 percent tax credit in the purchase year. For these people, the annual connection fee is peanuts.

For the electronics hobbyist, not paying a $\$ 60$ per year modem rental charge for each device connected to the telephone lines would be a boon to both the hobbyist and Ma Bell. After all, sending and receiving computer data, TV pictures, et al, over the lines would add to Bell's revenue as the minutes tick away. This is phone-line time that would not ordinarily be used.

Of course, AT\&T and other telephone companies still have an ace in the hole on all of this. It's called the "Consumer Communications Reform Act," which could overthrow legislatively the FCC rules on interconnecting modems. I hope, however, that this does not come to pass.

ELECTRONICS BODK CLUB

invites you to take this 1624-page electronics library for only

You Get All Three of These Huge Books For Only
 $\$ 1.99$

MASTER HANDBOOK/1001 ELECTRONIC CIRCUITS Here are IC and transistor circuits for practically anything and everything-with ALL the data needed to put them to work. It's the ideal schematic sourcebook tor all active technicians, engineers, experimenters, amateurs-for anyone who must occasionally or regularly construct or adapt electronic circuits for any purpose whatsoever. Each circuit dagram has every component carefulty tabeled, and every schematic is accompanied by all the info you need to construct the circuit for use in your own individual application. If there are coils to be wound, you'll find full and complete coll-winding there are colss to be wound, you'lis find iult and complete cot thew nding details right there on the spot. It special parts are required, you won betore you in condensed captions. The circuits included are combletely up-to-date and have pletely up-to-date, and have been designed, buit, tested, reworked as necessary, and perfected. You'll find any circuit you're ever likely to need in the pages of this rich volume, includes an ultracomplete 22-page cross-reference index so you can quackly find the circuit you need. The schematics are classitied according to general application. If you're in the business of servicingtepairing commercially buith electronic equipment, you re going to especially appreciate the comprehensive Appendix of iC substitutions. Which includes base diagrams for most poputar ICs, and gives you all the info you need to adapt the IC packages of one manufacturer to the circuit applications of another. 602 pps ., over 1250 illus

2ND CLASS FCC ENCYCLOPEDIA

Truly a one-volume electronics library all by thetf...a 602 -page supercourse in electronics that belongs on the bookshelf of everyone in electronics. It's as sweeping and all-encompassing as the FCC exam itself. Ht's a "quick-guide" to learning the answers to the 2nd and 3rd Class FCC exams (plus Element 9, for the broadcast endorsement), as well as an intensive, no-nonsense series of courses that can make you the master of any field related to radio communication. A special feature of this unique gurde is the short-form, long-form answer tormat to hundreds of FCC-posed questions: Whenever possible the answer to a question is divided into the shortest answer needed to satisty the FCC requirements: a longer answer then shows how any similar question may be answered, and is included tor relerence or for more complete understanding. Questions appear in italcized type A boldface type section in most answers enables you Io immediately extract from the detaled discussion that portion which directly answers the specific question. These 'theory packets" amount to an extremely comprehensive educational approach to the FCC exam, and are just one of the many ways in which this book is one of the easiest-to-use of all radio courses. An extremely complete 5000 -word index, fuliy cross-reterenced. provides instant access to any rule, formula, circuit diagram, or technical explanation. 602 pps., over 600 illus

DICTIONARY OF ELECTRONICS

This huge, quality dictonary is a handy reference that will serve most of your needs-extremety useful in whatever connection you have with electronics. Defines most all of the electronic terms you will run across in your everyday reading. . from alpha particles through zoom lens ..Including those found in radio. TV , communications, radar. electronic instrumentation, broadcasting, industrial electronics. etc The concise but clearly written definitions from all the various branches of electronics are of value to technicians, engineers, hobtoysts. experimenters, and students. It provides full, complete and easily understandable explanations of thousands of specilic electronics terms. A uraque feature is the cross-indexing. whereby key words contaned in the defintions (words that are defined more fully elsewhere in the book) are printed in small capitals so the user is not tell in the dark by any detinition. Appendices provide you with still more data-an extensive list of units and abbreviations. graphic symbols used in schematics, component color codes. db converston tables, data on the electromagnetic spectrum, tube base diagrams, etc 420 pps . 487 illus.
et us send you these three practical, time-and \square money saving books as part of an unusual offer of a Trial Membership in Fiectronics Book Club.

Here are quality hardbound volumes. each especially designed to help you increase your knowhow, earning power. and enjovment of electronics

These handsome. haidbound books are indicative of the many other fine offerings made to Members .important books to read and keep. volumes with your specialized interest in mind.

Whatever your interest in electronics-radio and TV servicing, audio and hi-fi. industrial electronics. communications. broadcasting. electronics as a hob-by-vou will find Electronics Book Club will help you get the job you want. keep it. improve it or make your leisure hours more enjovable. With the Club providing vou with top quality books. you may broaden your knowledge and skitls to huild your income and increase your enjoyment of electronics, too.

This Special Offer is just a sample of the help and generous savings the Club offers you. For here is a Club devoted exclusively to seeking out only those titles of direct interest to vou. Members are annually offered over 50 authoritative books on all phases of electronics.

This extraordinary offer is intended to prove to you. through your own experience. that these very real advantages can be yours.. that it is possible to keep up

Facts About Club Membership

- The 3 introductory books carry a publishers retall price of \$33.85. They are yours for only $\$ 199$ (plus postage and handling) with your Trial Membership
- You will receive the Club News describing the current Selection. Alternates and other ofterings. every 4 weeks (13 times a year).
- If you want the Selection, do nothing: it will be sent to you automatically, If you do not wish to receive the Selection, or if you want to order one of the many Alternates offered, you simply give instructions on the reply form (and in the envelope) provided. and return it to us by the date specifted. This date allows you at least 10 days in which to zeturn the form if, because of late mall delivery, you do not have 10 days to make a decision and so receive an unwanted Selection, you may return it at Club expense.
- Personal service for your account-no computers used ${ }^{1}$ - To complete your Trial Membership, you need buy only four addtional monthly selections or alternates during the next 12 months. You may cancel your Membership any tume atter you purchase these four books.
- All books-including the introductory Offer-are fully returnable atter 10 days if you're not completely satistied.
- All books are oftered at low Member prices pitus a small postage and handling charge. Prepaid orders shipped posiage
- Continuing Bonus If you continue atter this Trial Membership. you'will earn a Dividend Certificate for every book you purchase. Three Certificates. plus payment of the you purchase. Three Certificates, plus payment of boo
nominal sum of $\$ 1.99$ witl entite you to a valuable Book nominal sum of $\$ 1.99$ with entitite you to a valuable book pividend of your chided Members.
with the literature published in your areas of interest... and to save substantially while so doing. As part of your Trial Membership. you need purchase as few-as four books during the coming 12 months. You would probably buv at least this many anyway...without the savings offered through Club Membership.

To start your Membership on these attractive terms. simply fill out and mail the coupon todav. You will receive the 3 -volume Electronics Library for 10 day inspection. YOU NEED SEND NO MONEY! If you are not delighted, return them within 10 davs and your Trial Membership will be cancelled without cost or obligation.
Electronics book club. PO Box 10. Blue Ridge Summit. Pa 17214
TYPICAL CLUB SELECTIONS (and List/CIub prices) MicroprocessorAmicroprogramming Handboak $\$ 995 \$ 5$. 95 VHF UHF Fire, Police, Ham Scanners Service Hanual $\$ 95 \$ 5.95-M o d e r n$ Guide To Digital Logic $\$ 995 \$ 5.95$-CB
Radio Schematic/Servicing Manuals- 3 Volumes $\$ 2685$, Radio Schematic/Servicing Manuals- 3 Volumes $\$ 2685$, \$9.95-Color TV Trouble Factbook $\$ 9$ 95 $\$ 4.95$-CBer's Handybook Of Simple Hobby Projects 56 95 $\$ 3.95$-Modern Eliectronics Math $\$ 12$ 95/\$8. 95 -Electronic Music Circuit Guidebook $\$ 9$ 95/\$5.95-Build Your Own Working Robol $\$ 895$ Sransistor Radios You Can Buitd 56 I 9653.95 -Ham Radio Ad Tranced Class License Sludy Guide 88.95 . 94 - 95 -Aviation Elecvanced Class License Sludy Guide $\$ 8.95 \$ \mathbf{S} .95$-Aviation Elec S8 95 $\$ 5.95$-Radio Astronomy for the Amateur $\$ 895 \$ 5.95$

Empire's
 Blueprint For Better Listening

No matter what system you own, a new Empire phono cartridge is certain to improve its performance.

The advantages of Empire are threefold.

One, your records will last longer. Unlike other magnetic cartridges, Empire's moving iron design allows our diamond stylus to float free of its magnets and coils. This imposes much less weight on the record surface and insures longer record life.

Two, you get better separation. The small, hollow iron armature we use allows for a tighter fit in its positioning among the poles. So, even the most minute movement is accurately reproduced to give you the space and depth of the original recording.

Three, Empire uses 4 poles, 4 coils, and 3 magnets (more than any other cartridge) for better balance and hum rejection.

The end result is great listening. Audition one for yourself or write for our free brochure, "How To Get The Most Out Of Your Records." After you compare our performance specifications we think you'll agree that, for the money, you can't do better than Empire.

EMPIE
Already your system sounds better.
Empire Scientific Corp.
Garden City, New York 11530

HOW C $=6$
I can't get the numeral 6 following the C switch line in January 1977 "LED Circuit Quiz." The only segments I can see that light up are c, d, e, and f. What am I doing wrong?-Anthony W. Wallace, Portage, IN.

A number of readers are having the same problem. The correct solution is shown by the accented lines in the drawing.

PIONEER 10 AND TV

In the November 1976 Letters column, J.M. Lagerwerff stated that SECAM 60 color TV equipment was carried on Pioneer 10. Neither Pioneer 10 nor Pioneer 11 carried SECAM 60, PAL, or NTSC TV equipment. The imaging equipment in both cases is called an Imaging Photopolarimeter (IPP), which used separate Bendix Channeltron detectors for the visible red and blue colors. The IPP uses a spin-scan technique of imaging. The spacecraft is spin-stabilized, rotating at approximately 5 rpm , which forms one axis of a twodimensional scan field. The second axis is formed by stepping a telescope in discrete increments as the spacecraft rotates.
The data from the red and blue channels were encoded to six-bit PCM and transmitted to earth at 1024 bits' per second for Pioneer 10 and 2048 bps for Pioneer 11. These rates are far too slow for direct display. Under contract to NASA, I designed, built, and operated ${ }^{2}$ the conversion equipment that converted this very slow rate to NTSC color TV, which was then broadcast to the TV networks. The conversion was accomplished with a special slow-scan video disc recorder. Since green is a substantial portion of NTSC color video, 1 devised a means of synthesizing the green
from the red and blue data. Once all three color signals were mixed together, they were fed to an NTSC encoder.
I consider Mr. Lagerwerff's comments on the Pioneer pictures a compliment, as SECAM 60 is a very fine color TV system. $-L$. Ralph Baker, Optical Sciences Center, The University of Arizona, Tucson, AZ

Wants to hear bells

I find that the Sonalert ${ }^{\mathbb{D}}$ in my "Low Cost Apartment Burglar Alarm" (July 1976) puts out a sound of insufficient volume. In the article, it was suggested that a higher-power bell or siren could be substituted for the Sonalert. Could you please tell me how to accomplish this? Also, why the connection from the OFF contact of $S 1$ to the negative side of $B 1$, and what is the significance of the -V on the anode side of D1 and pin 8 of IC4?-S. Possner, Lauderdale Lakes, FL
To answer your last two questions first, there should be no connection between B1(-) and S1 (although it makes no difference to circuit operation if this connection is made as shown), and $-V$ at D1 and pin 8 of IC4 means that these two points must be connected together. To add a bell or siren to the circuit, replace the Sonalert with a 1000 ohm resistor and add an SCR control system as shown in the diagram. The value of the

B)

1000-to-5000-ohm resistor will depend on the gate requirements of the SCR selected. You may wish to use a separate high-current battery (B2) for the bell or siren. The RESET switch is required to turn off the SCR in the event the alarm is tripped.

Out of Tune

In "An 'RFI-Free Solid-State Thermostat," January 1977: R4 in the parts list should be a 2,000-ohm, 1 -watt, linear taper, 10% tolerance potentiometer; R7 in the upper left (connected on one side to the cathode of D1) should read R9, a 470 -ohm resistor. All fixed resistors should be 5% tolerance components.

Critics were most generous in their praise when the Shure V-15 Type III phono cartridge was first introduced. The ultimate test, however, has been time. The engineering innovations, the uniform quality and superb performance of the V-15 Type III have made it the audiophile's choice as the source of sound for the finest music systems both here and abroad.

Consider making the relatively modest investment of a new cartridge to upgrade the
performance of your entire hi-fi system. It will make a difference you can hear!

The original manuscript by I. S. Bach shown is reproduced by kind permission of the Trustees of The British Museum.

Shure Brothers Inc. 222 Hartrey Ave. Evanston, IL 60204
In Canada:
A. C. Simmonds e Sons Limited

TECHNICORNER

MODEL V-15 TYPE III
Tracking Force Range: $3 / 4$ to $11 / 4$ grams Frequency Response: 10 to $25,000 \mathrm{~Hz}$ Typical Tracking (in cm/sec peak recorded velocity at 1 gram:)
$400 \mathrm{~Hz} .26 \mathrm{~cm} / \mathrm{sec} \quad 1,000 \mathrm{~Hz} .38 \mathrm{~cm} / \mathrm{sec}$ $5,000 \mathrm{~Hz} .35 \mathrm{~cm} / \mathrm{sec} \quad 10,000 \mathrm{~Hz} .26 \mathrm{~cm} / \mathrm{sec}$ Channel Separation (Minimum): 25 dB at 1 KHz ; 15 dB at 10 KHz
Stylus: Model VN35E Biradial Elliptical, 5×18 microns ($.0002 \times .0007$ inches) Also a vailable: Model V-15 III G with the VN3-G Spherical stylus, 15 microns (.0006 inches)

Model VN78E Biradial Elliptical stylus, 13×63 microns ($.0005 \times .0025$ inches) for mono 78 rpm .

New Products

Adaditional information on new products covered in this section is available from the manufacturers. Either circle the item's code number on the Reader Service Card inside the back cover or write to the manufacturer at the address given.

PHASE LINEAR FM TUNER

The Model 5000 is the first FM tuner to be put into the Phase Linear line of separate hi-fi components. The tuner features a built-in dynamic range expander specifically designed for FM to improve dynamic range up to 9 dB .

Lesser amounts of expansion can be selected while receiving those broadcasts that have small amounts of compression. Other features include: fully variable muting; LED multipath indicators; fixed and variable output signal levels; signal-strength and centerchannel tuning meters that can be user calibrated; $75 / 25-\mu \mathrm{s}$ deemphasis switch; and panel light dimmer. Size is $19^{\prime} \mathrm{W} \times 10^{\prime \prime} \mathrm{D} \times$ $7^{\prime \prime} \mathrm{H}(48.3 \times 25.4 \times 17.8 \mathrm{~cm}) . \$ 499.00$.

CIRCLE NO. 91 ON RREE INFORMATION CARD

TELEX CB HEADSET

Telex's new lightweight CB headset, the Model CB-88, has a noise-cancelling microphone for clear, crisp voice transmission even where wind, traffic, and engine noise normally interfere with sound quality. The mike has a variable-gain amplifier and is mounted on a pivoting boom. A soft eartip

carries incoming signals directly to the ear. The eartip can be worn in either ear, with or without the headband. An adapter is furnished to allow the earpiece to be clipped to a user's eyeglasses. The push-to-talk switch has a clip for attachment to shirt or blouse. Below $\$ 70$.
circle no 92 on free information card

GOLD LINE FIELD-STRENGTH METER

The Gold Line Model 1101 is a compact fieldstrength meter with a frequency range of 20 to 160 MHz , for both base and mobile CB and marine operations. The meter features a

mini-antenna and a multi-color dial designed for easy reading. Measures $23 / 4^{\prime} \mathrm{W} \times 112^{\prime \prime} \mathrm{H} \times$ $11 / 2^{\prime \prime} \mathrm{D}(7 \times 3.8 \times 3.8 \mathrm{~cm})$, weighs about half a pound (0.25 kg). $\$ 9.95$. Address: Gold Line Connector, 25 Van Zant St., East Norwalk, CT 06855.

NATIONAL SC/MP KEYBOARD KIT

The National Semiconductor SC/MP Keyboard Kit is an inexpensive hand-held terminal for use with the 8 -bit SC/MP microprocessor kit to eliminate the need for a costly Teletype terminal. It has a 6 -digit hex display and features simple $\mu \mathrm{P}$ control to allow the user to evaluate the SC/MP CPU and direct object code program manipulation for development of a variety of applications software. The heart of the kit is a ROM firmware package (512 bytes) that replaces the Kit Bug ROM originally supplied with the SC/MP kit and allows the use of the hex keyboard to modify or examine the contents of memory and the SC/MP registers and to monitor program performance. The kit comes complete with manual, all IC's, resistors, keyboard display cable connector assembly, Wire Wrap connectors, precut wires, and a manual Wire Wrap tool. \$95.00.

CIRCLE NO. 93 ON FREE INFORMATION CARO

BOSHEI OPEN-REEL TAPE DECK

The Model IT-1000 tape deck from Boshei Enterprise Co., USA features four heads, three motors, full-logic solenoid-actuated tape motion, $10^{\prime \prime}(25.4-\mathrm{cm})$ reel capacity, and large VU meters. Separate microphone and line inputs and a digital tape counter are also

provided. An Auto Reverse feature provides the convenience of cassettes in an open-reel tape deck, allowing up to $81 / 2$ hours of uninterrupted stereo listening. The transport operates at $71 / 2$ or $33 / 1 \mathrm{ips}$ (19.05 or $9.53 \mathrm{~cm} / \mathrm{s}$). At $71 / 2 \mathrm{ips}$, wow and flutter is rated at 0.06% or less, S / N ratio at 55 dB , and frequency response at 30 to $20,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$.

CIRCLE no. 94 ON free information card

SWAN SSB HAM TRANSCEIVER

A new 700-watt PEP single-sideband Amateur Radio transceiver is now available from Swan Electronics as the Model 700CX. It features up to 10 channels for MARS operation with the optional Model 510-X plug-in crystalcontrolled oscillator. Frequency coverage includes the 80 -, $40-$ - 20 -, 15 -, and 10 -meter bands. USB, LSB, and CW modes of operation are switch selectable, as are the 25 - and

$100-\mathrm{kHz}$ calibration frequencies from the built-in calibration oscillator. The audio bandpass is 300 to 3000 Hz . A dual-ratio planetary control scheme is used for the tuning system. The receiver's sensitivity is $0.5 \mu \mathrm{~V}$ at 50 ohms for $10 \mathrm{~dB}(\mathrm{~S}+\mathrm{N}) / \mathrm{N}$. Audio output is rated at 4 watts into 3.2 ohms. Size is $13^{\prime \prime} \mathrm{W} \times$ $11^{11} \mathrm{D} \times 51 / 2^{\prime \prime} \mathrm{H}(33 \times 28 \times 14 \mathrm{~cm})$ and weight is $171 / 4 \mathrm{lb}(7.8 \mathrm{~kg}) . \$ 649.95$.

```
CIRCLE NO. 95 ON free information card
```


SONY AM/STEREO FM RECEIVER

Sony's Model STR-3800 AM/stereo FM receiver is said to offer a high degree of flexibility in a moderately priced receiver. The amplifier is rated at 25 watts/channel minimum rms into 8 ohms from 20 to $20,000 \mathrm{~Hz}$ with no more than 0.5% THD. The tuner section fea-

tures a PLL (phase-locked loop) IC in the multiplex section, FET r-f amplifier, permanently aligned i-f filters. Other ratings include $2-\mu \mathrm{V}$ IHF sensitivity, $50-\mathrm{dB}$ selectivity, $1.5-\mathrm{dB}$ capture ratio, $68-\mathrm{dB}$ S/N in stereo, and $35-\mathrm{dB}$ stereo separation at 1000 Hz . A stereo indicator, twin tuning meters, and switchable muting are provided. The preamplifer section features a direct-coupled, two-stage phono equalizer for a ± 1-dB RIAA tracking and 68 $\mathrm{dB} \mathrm{S} / \mathrm{N}$ ratio. The S / N in the high-level input mode is 90 dB . Size is $19^{\prime \prime} \mathrm{W} \times 1278^{\prime \prime} \mathrm{D} \times$ $53 / 3^{\prime \prime} \mathrm{H}(48.2 \times 32.7 \times 14.6 \mathrm{~cm})$ and weight is $23 \mathrm{lb}(10.5 \mathrm{~kg}) . \$ 280.00$.

CIRCLE NO. 96 ON fREE INFORMATION CARD
er features include: a PA switch that delivers 3 watts of audio power, a warning light that indicates antenna mismatch or failure; an $\mathrm{S} / \mathrm{r}-\mathrm{f}$ meter, and an external CB switch that directs received $C B$ signals to an external speaker. CIRCLE no. is on free information caro

AUDIONICS STEREO POWER AMPLIFIER

The Model PZ3 HP is the second-generation version of the original Audionics Model PZ3 power amplifier. Offered with optional peakindicating VU meters and input level controls, the new amplifier is rated at 100 watts/channel minimum rms into 8 ohms from 20 to

$20,000 \mathrm{~Hz}$ at 0.03% maximum THD. Input sensitivity is rated at 1.0 volt for full output. The frequency response at $\pm 0.5 \mathrm{~dB}$ is from 20 to $20,000 \mathrm{~Hz}$ (5 to $70,000 \mathrm{~Hz}$ at -3 dB). Hum and noise are rated at more than 95 dB below the rated output, damping factor at 1000 Hz into 8 ohms is 50 , and output impedance is 4 ohms to infinity. The amplifier

EICO SOLID-STATE ENGINE ANALYZER

Eico's Model 885 Tunemaster solid-state engine analyzer performs up to 16 different automotive tests and analyses. Among them are: ignition points test; dwell test; dwell variation; low rpm (tachometer); high rpm (tach); battery test; accessory current drawn; charging system output; output test (regulator by-

pass); voltage-loss test; ballast resistor test; spark-plug wire test; capacitor test; alternator test; and fuse test. The large $6^{\prime \prime}(15.2-\mathrm{cm})$ meter has multi-range, color-coded scales. Controls include a cylinder selector switch and a mode selector. The tester operates on power from the vehicle's battery. The instruction manual provided with the instrument details step-by-step tune-up information for all domestic and foreign cars. \$49.95.

CIRCLE No. 97 on riee information card

midLand 40-CHANNEL CB TRANSCEIVER

The Midland Model 77-882 40-channel mobile CB transceiver features both switchable automatic noise limiter (anl) and noise blanker, Delta tuning and a variable squelch control. The dual-conversion superheterodyne receiver has a tuned r-f stage, active agc; the transmitter is rated to deliver 4 watts of output power. All-channel operation is obtained with a phase-locked-loop (PLL) synthesizer. Oth-

Many hi-fi enthusiasts bought a Crown DC-300A power amplifier because they were impressed by its performance specs, and by the quality of its "listening" performance. It was, for them, the "ultimate" amplifier. Why not do what they did? Compare the specs for the Crown DC-300A with those of any other amplifier. Compare the clean,
pure DC-300A sound that comes from low-distortion circuitry and plenty of headroom. And especially compare the DC-300A with its smaller relatives, the Crown D-150A and D-60. Same clean, pure sound, less power, but maybe just what you need.
Use your own judgment. You could find your ultimate listening standard in Crown.

> DC-300A Stereo Amp
> 155 watts per channel min. RMS into 8 ohms
> ($1-20,000 \mathrm{~Hz}$), no more
> than 05% total
> harmonic distortion.

D-150A Stereo Amp
80 watts per channel min RMS into 8 ohms
($1-20,000 \mathrm{~Hz}$), no more than .05\% total harmonic distortion.

D-60 Stereo Amp
32 watts per channel min. RMS into 8 ohms
($20-20,000 \mathrm{~Hz}$), no more
than . 05% total
harmanic distortion.

Fast playback coupon

Send directly to Crown for fast info on amps.

Name

Address
City
State
Zip
Box 1000, Elkhart IN 46514

WHEN YOU BUILD A SPEAKER TO SOUND GREAT
 ON EVERY PARTOF THE MUSIC, YOU CANT CUTCORNERS ON ANY PART OF THE SPEAKER.

A single HPM-100 weighs almost 60 pounds.
The fact it weighs more than a Large Advent speaker, Bose 901 or JBL L100 is not an accident.

Our speaker frames are made of heavy cast aluminum instead of the usual stamped metal, so you hear only the speakers vibrating and never their frames.

Our magnets are oversize to spare your ears needless distortion.
And our cabinet is made out of special compressed wood that's denser and heavier than ordinary wood. So the sound is forced out of the cabinet instead of being absorbed by it.

Of course, not everything that adds to the sound of an HPM-100 also adds to its weight.

Our supertweeter uses nothing but a piece of High Polymer Molecular film to produce incredibly clear and crisp high frequencies.

Our midrange driver and tweeter have cones that are light enough to give sharp response, but rigid enough not to distort.

And our 12 inch woofer has a long throw voice coil and unique carbon fiber blend cone (instead of the more typical cardboard cone) that work to produce the kind of realistic bass you not only hear, but feel.

Naturally, we could go on. About our 12-1/2 feet of damping material. Or about the aluminum screws that keep our speakers from falling out. They're ordinarily used to keep airplanes from falling apart.

But we figure at this point you'd rather hear our speakers in person than hear any more about them from us. HPM
perioners

Nitchlosh caraood and FM DIRECTORY

Get all the newest and latest information on the new Mclntosh Solid State equipment in the McIntosh catalog. In addition you will receive an FM station directory that covers all of North America.

MX 113
FM/FM STEREO - AM TUNER AND PREAMPLIFIER
SEDD
TODAY!

[^0] For non rush service send the Reader Service Card to the magazine.

This versatile mini breadboard features the same superior contacts, materials and construction we use in our full-scale ACE All Circuit Evaluators. Any solid hookup wire up to \#20 plugs right in to connect DIPs, discretes and almost any components you have on hand. Super-Strip gives you 128 separate five-tie-point terminals in the circuit building matrix and 8 power and signal distribution lines - enough capacity to build circuits with as many as nine 14 -pin DIPS. And when you're done with your hookup, just pull it apart - everything's as good as new. Super-Strips come with your choice of nickel-silver or gold-plated terminals. Plus an instant-mount backing and quick-removal screws for fast and easy stacking or racking. Heard enough? Then stop looking and start cooking with A P Products Super-Strips.

$\begin{array}{\|c\|c\|} \hline \text { Part } \\ \text { Number } \end{array}$	明odel Number	$\begin{gathered} \text { Terminal } \\ \text { Type } \end{gathered}$	Price Each
923252	SS-2	nickel-silver	\$17.00
923748	SS-1	gold-plated	\$18.90

Order from your A P distributor today. Our distributor list is growing daily. For the name of the distributor nearest you call

Toll-Free 800-321-9668.
comes with a rack-mount front panel with black anodize finish. Size is $19^{\prime \prime} \mathrm{W} \times 15^{\prime \prime} \mathrm{D} \times$ $6^{\prime \prime} \mathrm{H}(48.3 \times 38.1 \times 15.2 \mathrm{~cm})$ and weight is 29 $\mathrm{lb}(13.2 \mathrm{~kg})$ less meters or $31 \mathrm{lb}(14.1 \mathrm{~kg})$ with meters. $\$ 429.00$ without meters, $\$ 529.00$ with meters.

CIRCLE No. is on free informaton card

DIGITAL LOGIC PROBE

"Probit" is a new digital logic probe from Control \& Information Systems, Inc. It tests TTL/ DTL and CMOS logic systems and can detect pulses down to 35 ns and accurately check for valid and abnormal logic levels. The probe has greater than 200,000 -ohm input impedance (at 30 MHz) to assure minimal loading on the circuit under test. Both over-voltage

and reverse-voltage protection are provided. A seven-segment display indicates " H " for a logic high, "L" for a logic low, and a decimal point for pulse detection. The display is blank for abnormal logic levels. Convenient "MicroHooks" are used for test connections, and the probe tip is detachable. The logic family is selected by operating a slide switch on the probe's body. Size is $5^{\prime \prime} \mathrm{L} \times 1^{\prime \prime}$ Dia. (12.7 \times 2.54 cm). $\$ 34.95$.

CIRCLE NO. 100 ON FREE INFORMATION CARD

SOUTH SHORE FOLDING CB ANTENNA

South Shore Trading Corp. has announced a 102" (2.6-m) CB whip antenna that conveniently folds to a compact $155 / 8^{\prime \prime}(39.7 \mathrm{~cm})$ in seconds for easy storage. The SST Whip-AWay antenna consists of a series of hollow interlocking steel sections that are "strung"

on a spring-loaded cable and easily opened. The brass fittings automatically seat themselves and are held in place by the springloaded cable to insure secure mechanical and electrical connections. The antenna can be used with any heavy-duty bumper mount equipped with a standard $3 / 8^{\prime \prime}-24$ female fitting. $\$ 34.95$.

CIRCLE NO. 101 ON mee information card

Print Your Heart Out.
 With help from the Digital Group, naturally.

Now, that small computer system you own or have been considering for personal or business use suddenly becomes a lot more usable-with the addition of a full-size impact printer from the Digital Group. A printer designed for small computers that need big output (like yours).
With the Digital Group printer, you can print your heart out...and it won't cost an arm and a leg. The Digital Group printer is available for less than $\$ 500$. That's right- $\$ 500$.

Just look at these specifications:

- Fast-120 characters per second
- 96 characters per line
- 12 characters per inch horizontal
- 6 lines per inch
- Makes up to 4 copies simultaneously
- Character set and pitch variable under software control-double width characters, etc.
- 5×7 character matrix
- Ribbon has built-in re-inkers for a life of 10,000,000 characters
- Paper can be either a standard $81 / 2$-inch roll, fanfold or cut page
- Interfaces to 8 -bit parallel ports

There are lots of capabilities and outstanding features of the Digital Group printer...and (as always) the best news is our price. Kit prices start as low as $\$ 495$ for the printer and interface card. It simply can't be beat.
Find out all the facts about the Digital Group printer now. Just fill in the coupon below or give us a call for the details. We think you'll find a place for our printer in your system ...and in your heart.

P.O. Box 6528

Denver, Colorado 80206
(303) 777-7133

Quick. I want to print my heart out.
Send me all the details on your full-size impact printer.

Name

\qquad
Address

And once you get it, it's going to be all you'll ever need. Because Midland gives you what CB is supposed to give you. The power to communicate. The power to reach out and pull in your own personal horizon. And the clarity to be understood wherever you reach.

For 1977, the power comes to you in an entirely new generation of 40 channel CB radios. Spearheaded by the remarkable Midland 838.

With it comes switchable automatic noise limiter, noise blanker and audio filter-three noise elimination systems that let you receive with greater
clarity. The 838 is also power in your hand with an automatic channel advance and volume control right on the mike. And it's the power to know exactly where you're heading with our large, bright L.E.D. digital channel indicator.

RUN WITH NUMBER 1. MIDLAND CB.'

The 838, though, is only one aspect of Midland Power.

We offer a complete line of CB's, from base stations to portables, to every kind of mobile transceiver that will put our power in your hands at a very reasonable price. Compare. We don't think anybody, anywhere will give you such quality at such an affordable price.

And we back up that quality with our Midland warranty and convenient service centers from Carolina to California.

And finally, Midland Power is the way we put our 15 years of CB experience into every set we build.

Good experience, obviously. Or we couldn't have done what we did last year. Sell over 2 million Midland CB radios, to
make us the number one selling CB in the world.

Midland Power. It's what you want from a CB.

It's what you get when you run with number 1. The ONLY Ignition System that has COMPLETELY overcome the Problems that have baffled the Auto Industry for Years！ SO RELIABLE $(99.9+\%)$ ．．SO PERFECTED ．． that it will soon be STANDARD on most Future new Cars！

来 The＂XR－700＂is a COMPLETELY NEW Ignition System employing the Most Advanted Technolagy，that replaces the intefficient Points and Condensor with an infrared Light Beam to Trigger the Latest type of Solid－State Power Components． Once installed．．＂XR．700＂has NO moving Parts to wear out or adjust．It works without Friction or wear．Not affected by Dirt，Oil，Moisture，Vibration or extreme Engine Temperatures！ RUGGED and RELIABLE！
＊The＂XR－700＂is engineered to OUTLAST YOUR CAR！
＊The＂XR－700＂produces the MAXIMUM＂High Energy＂ Long Duration Spark．．．from your present car＇s Ignition Coil． This permits the Positive Firing of Spark Plugs，even under the most Adverse conditions．Also，Eliminates＂Engine Mistire，＂ resulting in more COMPLETE COMBUSTION！Thus you get IMPROVED Fuel Mileage，a HIG HER Performance Level． keeps Plugs FROM FOULING and gives LONGER Plug Life！

Customers Report：

＇IT MORE THAN PAYS FOR ITSELF！大 INCREASES Gas Mileage up to 30% ！ ＊SAVES Money on Costly＂Tune－Ups＇！ K Gives Continuous PEAK Performance！ t QUICKER Starting in Any Weather！ Smoother Running．．．Fasier Acceleration！ Plugs Last Up to 4－Times LONGER！＂
＊Reliability PROVEN in Millions of Customet Miles to be so exceptionally GODD．．that every＂XR．700＂＇has a LIFETIME WARRANTY！FREE Repair or Replacement for as long as you OWN the Unit！，，and even if you CHANGE Cars，Allison will supply you the necessary PARTS to fit ANY Point－Type Distributor．．FREE！（Include S2 for Postage \＆Handling）．
＊FITS ALL CARS，Domestic \＆Foreign．4， 6 or 8－Cylinder．
\star DO－IT－YOURSELF．．EASY INSTALLATION！ The New＂XR－700＂is Completely Factory Assembled ．， Thoroughly TESTED！New Precision＂Drop－is＂Mounting 8racket，with color－coded，＂Snap－Topether＂wire connections No Distributor Removal necessary Protected aganst incorrect Hook－ap Thousands sold at $\$ 59.95 \bullet$ ONLY NOW！Allison＇s Production Technology offers you the same Premium Ouality XR－700 at this SPECIAL LOW Price．
 COMPLETE THAT＇S EVERYTHING．．INCLUDING POSTAGE \＆INSURANCE ＊ORDER WIt H CDNFIDENCE．
install the＂XR－700＂，and prove to your own SATISFACTION that it is as advertised，or return it within 30 days for a F ULL Refund of the Purchase Price
＊SAVE！DRDER FACTORY DIRECT． Send Check or M．D．，State Car Make，Year，No．Cylinders
＊MASTER CHARGE or BANKAMERICARD Card Holders： OROER by TOLL．FREE PHDNE．（800）423．6525，Ext． 2 or Send us（1）Your Number，（2）Interbank No．，（3）Exp．Date．

＊S SEND for FREE BROCHURE and Comparison Sheet．

＂CB＂＂USE RS：The＂XR－700＂completely ELIMINATES the Major Cause of Primary（Ignition Noise）Interference．

事 If you have already installed a＂Capacitive Discharge＂Ignition事 Convert your＂C－D＂Unit to BREAKERLESS！ INCREASE ITS EFFICIENCY with＇XR－CD＇．，．only S29．95行元寝
＊America＇s Oldest and Largest Manufacturer of Opio－Electronic Ignition Systems．（c）
GLLISON AUTomorvic eo
1267 －PO，East EDNA PL．，COVINA，CAL． 91722

New Literature

ELECTRONIC ORGAN KIT DATA

Devtronix Organ Products is now offering il－ lustrated literature describing different mod－ els，related accessories，and simple assem－ bly techniques on its complete line of build－it－ yourself electronic organs．Organ types range from small single keyboard practice models to instruments larger than a three－ manual theater organ．A 13－minute LP stereo recording，which presents a wide variety of different types of music demonstrating voic－ ing range capability，is also included for 50 cents．Address：Devtronix Organ Products， 5872 Amapola Drive，San Jose，CA 95129.

TOOLS CATALOG

Catalog No． 22 from Techni－Tool is full of unique and often hard－to－find tools for elec－ tronics work．Listed are 25 new tool kits for the engineer and technician．The standard lines of hand tools and accessories are listed and illustrated，with more than 10,000 differ－ ent items．A＂Design－A－Kit＂section tells the reader how to go about putting together his own tool kit by selecting only those items he needs．Address：Techni－Tool，Inc．，Apollo Rd．，Plymouth Meeting，PA 19462.

COAXIAL CABLE CATALOG

A new 34－page＂Essex Coaxial Cable＂cata－ \log is available from Essex Electronic Wire Products．It contains up－to－date listings of coaxial cables，photos，and charts．Sections highlight r－f transmission lines，military RG／U nomenclature，RG／U－type triaxial cable，elec－ tronic sub minax coaxial cable，two－way an－ tenna cable，CATV drop lines，etc．Address： Essex Electronic Wire Products， 6235 S．Har－ lem Ave．，Chicago，IL 60638.

SEMICONDUCTOR REPLACEMENT GUIDE

The Workman Electronic Products Semi－ Conductor Catalog and Replacement Guide consists of 175 pages that list and cross－ref－ erence more than 75,000 manufacturer num－ bers to more than 200 Workman replace－ ments．It also features a cross－reference to other major semiconductor manufacturers． Address：Workman Electronic Prods．，Inc．， P．O．Box 3828，Sarasota，FL 33578.

SOUND BROCHURES FROM SHURE

A pair of brochures from Shure describe two products that are said to reduce the compli－ cation and cost in finding room response trouble spots in sound systems and to equal－ ize the systems to desired frequency－ response curves．Brochures No．AL558 and

No．AL554 describe the Model M615AS equalization analyzer system and Model SR107 audio equalizer．Full technical details are given for each product．Address：Shure Bros．，Inc．， 222 Hartrey Ave．，Evanston，IL 60204.

SOUND EQUIPMENT CATALOG

Argos Sound has a new 12－page，three－color catalog with photos and descriptions of its complete line of sound systems and compo－ nents．Included are a large selection of sound columns，portable sound systems，baffle／ speakers，wall baffles，and CB base and mo－ bile speakers．The list of specifications in－ cludes weights and measures in the standard and metric systems．Each product is de－ scribed according to its acoustical application to specific market areas．Address：Argos Sound， 600 S．Sycamore，Genoa，IL 60135.

1802 MICROPROCESSOR USER MANUAL

＂User Manual for the RCA CD1802 COS－ MAC Microprocessor＂（No．MPM－201A）is for those with a limited familiarity with computers and programming．It guides the reader through microprocessor architecture and in－ troduces a set of comprehensive，easy－to－ use programming instructions．The manual is a detailed guide to the application of the COSMAC CDP1802 microprocessor．Exam－ ples illustrate the operation and use of each of the 91 instructions．The manual illustrates methods of adding external memory and con－ trol circuits and shows the use of I／O instruc－ tions and interface lines，including DMA，in－ terrupts，flags，commands，processor state indicators，and external timing pulses．Price is $\$ 5.00$ ．Address：RCA Solid State Div．，Box 3200，Somerville，NJ 08876.

CALCULATOR DIGEST

＂The Hewlett－Packard Personal Calculator Digest＂（32 pages）is written in magazine style and describes the operation and design of hand－held and printing calculators．Sub－ jects include thermal printing，testing，servic－ ing，CMOS，PMOS and NMOS circuits and RPN language．A catalog section provides specification information on each of Hewlett－ Packard＇s calculators，and charts illustrate the uses of each model．Letters to the editor and a question and answer section are also included．Address：Inquines Manager，Hew－ lett－Packard Company， 1000 N．E．Circle Blvd．，Corvallis，OR 97330.

LOUDSPEAKER CATALOG

＂AR Guide to Loudspeakers＂is a new，36－ page，full－color catalog，describing Acoustic Research＇s Advanced Development Division line of speaker systems．It gives detailed in－ formation concerning speaker efficiency and placement and amplifier power requirements． The design，production and testing of speak－ ers is explained and a section on the philoso－ phy of music reproduction is included．Price， $\$ 1.00$ ．Address：Acoustic Research， 10 American Dr．，Norwood，MA 02062 or free from AR products dealers．A dealer list will be sent on request．

MAGAZINES AT DISCOUNT! You SAVE up to 50\%

Stereo Scene

BY RALPH HODGES

THE HOUSE THAT HI-FI BUILT

"Live music is the only standard," we are told. "Your audio system may sound impressive, but does it sound like the real thing?" "Go to a concert before you pick out your speaker systems." And occasionally, when our judgment in matters of sonic accuracy is being called into question: "When was the last time you listened to live music?"

Well, the definition of high fidelity implies faithfulness to something; isn't live music a perfectly natural and appropriate something? Surely. But as one who hears live music several times a week at the very least, I have a particular problem with this proposition: I can't for the life of me figure out what live music sounds like.

It may seem like an heretical statement, but I would hardly call a season ticket to Boston's Symphony Hall (or any other auditorium) an adequate acquaintance with the sound of live music. As proud Bostonians must be aware, the experience of hearing music in Symphony Hall is unique, and usually very rewarding. The same music heard elsewhere sounds different. In fact, of the various recordings I have that were made in this hall, there is none that does more than stir the vaguest recollections of the live experience. Perhaps this is because the recording team didn't trouble to cluster the microphones around my usual seat. (Indeed, if former practice still prevails, my usual seat is actually ripped out of the hall for recording sessions, and part of the orchestra put in its place.) But whatever the reason, the fact
remains that music in Symphony Hall does not sound very much like music in, say, New York's Carnegie Hall.

Avery Fisher Hall. Certainly music in Boston's Symphony Hall sounds different than it did in New York's old Philharmonic Hall-so different that New York concert-goers were up in arms about it for years. If you've read a newspaper since 1974, you probably know that that unfortunate situation has largely been rectified. A little over two years ago the retiring Avery Fisher, founder of Fisher Radio (which once advertised highfidelity systems as the means to acquaint your children with the live music they might otherwise never hear), settled a handsome sum on the Lincoln Center corporation, which used the funds to totally rebuild the auditorium (duly renamed Avery Fisher Hall) from the inside out. It was truly the house that hi-fi (or hi-fi money, anyway) built. First critical reaction to the new structure was generally approving, which strongly whetted the appetites of myself and other likeminded souls to hear this wonder. However, I decided to put off my initial visit for several months to allow the orchestra time to accommodate itself to the new environment. When I did make my move, just a few days ago, it was with the most helpful cooperation of the N." Y. Philharmonic press office, which got me admitted to the morning rehearsal for a large-scale concert, and to the first performance that evening. The program (Saint-Saens' Third Symphony

New York's new Avery Fisher Hall.
and Shostakovich's Fourteenth) probably could not have been improved upon for my purposes, involving as it did the full Romantic symphony orchestra, organ (electric organ; the hall's pipe instrument went with the renovation), piano, solo voices, and the full dynamic range of which all these instruments are capable. Leonard Bernstein conducted.

Different Seat, Different Sound. When I walked into the rehearsal, I learned that only the three upper tiers in the back of the hall were available for seating. The orchestra floor was verboten, and the side boxes were still being worked on. From the approximate front center of the first (lowest)tier, the sound of the orchestra tuning up was encouraging. Everything seemed to project, particularly the low strings, which were elusive in the old hall. But then as Bernstein, with his left side to our small audience of freeloaders, conferred for several minutes with the organist, I noted that the sibilance in his voice was all but inaudible, although the body of the speech was there.

This impression-a lack of bril-liance-persisted as the music began. The low strings remained robust, but the violin choruses seemed muffled, diffuse, and somewhat wavery and unsteady in their texture. It was a most familiar effect; I have heard it and cursed it on many now-discarded "high-fidelity" systems. Was I too hasty in blaming the equipment?

Another problem: the sound was weak. On the vigorous tutti in the early minutes of the Saint-Saens my little sound-level meter (which was creating a minor sensation amongst my neighbors) showed a maximum of 94 dB (unweighted). Average level was perhaps 88 dB , which I think is too soft, especially with the hall largely unoccupied by a soundabsorbing audience. Astonishingly, the brass parts could scarcely be distinguished from the overall texture, the sound was so lacking in edge and "bite."

Curious about the effect of the overhanging tier on reflections from the ceiling, I then moved to the left rear corner of the first tier. The sound underwent a remarkable transformation. I'm not sure I can explain it, but I can describe it perfectly: it was the sound of a dirty stylus, without question. And mind you, this is live music!

The Second Tier. Up one story, and again front and center, there was an appreciable improvement. Now some sibilance was detectable in Bernstein's

Americans have been using Motorol: 2-way radios to find campsites for yeare

synthesizer provides precise tuning (automatically, of course).

A profes-sional-quality $31 / 2$ inch top-fire speaker gives the Motorola CB an audio quality that must be heard to be fully appreciated.

And every Motorola CB gives you the added advantage of a power mic that doesn't need batteries. That doesn't cost 50 bucks extra.

It's a fact that the people who first put radio on wheels also made the first radio on wheels on the moon.

But it's not surprising.
Because Motorolå makes more radios for police, firemen, taxis, and lunar rovers than anybody.

And now Motorola makes a 40-ChannelCBradio that shares much more than a name with our professional 2-way radios.

The clean, uncluttered lines of the Motorola CB, for instance.

Features that many manufacturers leave on the outside of their sets (or don't offer at all) are built into a Motorola CB.

Gain control, noise limiting, audio compression, even a TV interference filter are built-in, fully automatic circuits that actually make communication better.

And operation easier.
A digital phase lock loop

The Motorola 40-Channel CB radio.
We believe it's the most sensibly engineered CB radio on the market. We believe it will deliver years of service at a level of performance few could match.

Put a Motorola CB radio under your dash and you'll believe, too.

Motorola CB

From the voice of experience in 2 -way radio.
voice, even with his back turned. The violins began to coalesce more, and the quality of their attack was more apparent. Brass was still a disappointment, however, sounding wooly and indistinct.

It was here that I measured the hyperactive finale of the Saint-Saens, which got up to 98 dB (96 dB without the bass drum, which didn't sound like much, but which certainly rocked the meter). This is not enough, particularly if the sound is not radiantly alive to begin with. But feeling I was on the track of something, I made my solitary way up to the cheap seats in.

The Third Tier. I was really not prepared for what I heard. The orchestra by now was well into the Shostakovich, and the cellos and basses were executing a quiet passage in pizzicato and short, light bowing as I sat down. A fat, rich, glorious "Thrummm" resounded throughout the hall below. When the high strings entered they rushed into focus, bright, full-bodied, precise in attack,
and sometimes even a little steely, although never harsh. The soprano voice, which before had struggled to emerge above the orchestra (incidentally, the soprano and bass were on risers behind the string orchestra, presumably to benefit from the horn-like flare of the stage enclosure), had power that seemed to saturate the stage area and swell irresistably out. And the important xylophone part had a quality-a stinging, violent snap-that I would have sworn could be captured only by closely spaced microphones, as in the recording I had listened to the night before.
As you can tell, I loved it all. The sound had precisely those characteris-tics-power, clarity, brilliance, attackthat I look for in a reproducing system and in a recording. Paradoxically, these effects were available (in the seats open to me) only in the part of the hall most remote from the stage. But the explanation, I think, is simple. The third tier also offers the seats closest to the ceiling, which is probably the major sound-
reflecting structure in the hall. This proximity means that a host of reflections arrive almost immediately to reinforce the direct sound reaching you. I only wish the brass had been present (they retired after the Saint-Saens) to cap the whole thing. I made no measurements in the third tier just because the orchestra was so diminished in size and power.

The Performance. The seats we were assigned for the evening performance were to the left of the orchestra section, row U-significantly remote from my listening sites of the morning, which was too bad. Throughout the day I had wondered whether the acoustic absorption of an audience might diminish the prominent mid-range and upper bass, exposing the brilliance I wanted to hear. I have the impression that it helped, but I lacked a standard of comparison and couldn't judge reliably.

In row U-left, it was possible to sense the contributions of both the direct sound from the orchestra and the reflec-

During rehearsal, the author sat in the first tier, row AA, seat 104 (shown by circle in color overlay); then first tier, DD-19; second tier, BB-109; third tier, AA-110. Forthe performance, orchestra, U-1.
tions from the hall for many instruments. For other instruments (the violins, for example) reflected sound dominated; the string basses, hard by the stage's right reflecting wall, provided almost all direct sound and early reflections, which made them sound very taut, damped, and strangely woody.

Being much closer to the orchestra helped enormously in terms of loudness, and the climaxes were quite satisfying. However, the violins, although clear, were oddly disembodied and somewhat dim, giving a slight cotton-in-the-ears feeling that either they weren't completely there, or you weren't. Woodwind detail was good, with credible timbre, but the brass, quite audible at last, still lacked that characteristic "buzzy" edge of excitement. The brass also seemed late and unsure in its attacks-apparently a result of the time necessary for the sound to build up in the hall. The pedal notes from the organ (extreme stage left, with speakers aiming roughly into the stage enclosure) were not as prominent as they had been in the tiers. And the soprano voice was again struggling to rise above the orchestra.

Having said all this, I'll add that the overall performance, executed as well as I could ever hope to hear for both pieces, was tremendously dramatic, arresting, and satisfying. It did not, however, sound very much like my idea of live music!

Semi-live. At one time or another, I think I have heard-at live performances in real concert halls and elsewhere-virtually all the faults I've ever heard in subpar high-fidelity systems. The catalogue includes harsh, strident violins, boomy bass, overall fuzziness or raspiness, poor transient response, bad stereo, honkiness, nasality, and even ripping and rattling noises suggestive of cartridge mistracking (usually coming from the bowed strings). When you consider the usual causes for these "distortions" in real and reproduced music, you'll see that they are often somewhat analogous, so I guess it's not too surprising that they sound much the same.

Still, live music does have a definable sound: the sound of the instruments without any interfering acoustic. For lack of a better substitute, this is what I gen-
erally use. The accomplished street violinist who prowis Manhattan's Fifth Avenue is my reference for string sound. Brass I get from several talented quintets who set up at the entrance to New York City's Central Park Zoo in the summers. Woodwinds-flutes, oboes, clarinets, and even bassoons and bass clari-nets-abound throughout the city, as do jazz "combos" with abilities and instruments of widely varying quality. There is even a touring bagpipe, for those so inclined.

This is open-air music, without any enveloping acoustic. When you have a good sense of the instrument itself, I believe you're better prepared to make allowances for its sound in different settings, concert halls and listening rooms included. But as for the usual sound of "live" music, it has a variety of sounds; a good reproducing system will reveal this variety, rather than some hypothetical sameness.
P.S. Should the above remarks seem to reflect unfavorably on Fisher Hall, I take them all back. It, too, in its way is an instrument, and a rather sophisticated one. But avoid those rear corners.

View from the stage of the 2742-seat auditorium in the newly reconstructed Avery Fisher Hall at Lincoln Center for the Performing Arts, New York. Seating plan opposite.

Julian Hirsch

 Audio Reports0NE OF the key specifications of a phonograph turntable is its rumble level. Rumble is the audible result of mechanical vibration that causes the pickup cartridge to move relative to the record, or vice versa. This produces an electrical output signal that cannot be distinguished from the recorded program, at a very low audio or sub-audible frequency. As the name suggests, the sound often resembles a low-pitched hum. The vibration comes principally from the motor, although other rotating parts (such as an idler wheel) can also contribute.

In general, rumble covers a broad spectrum of frequencies, with some emphasis on certain discrete frequencies. For example, a conventional four-pole motor, operating from a $60-\mathrm{Hz}$ power line, revolves at about 1800 rpm , or 30 revolutions per second. A slight unbalance or eccentricity in the rotor or its shaft will cause the motor to vibrate at 30 Hz . If the vibration is allowed to reach the platter or the pickup arm, it will generate a $30-\mathrm{Hz}$ signal in the cartridge outputs. Usually this is accompanied by higher frequency components, generally at harmonics of the basic revolution frequency (in this case, $60 \mathrm{~Hz}, 90 \mathrm{~Hz}$, etc.). The idler wheel turns more slowly than the motor, but is more likely to be eccentric and thus contributes a number of rumble vibration frequencies, beginning at a few hertz and overlapping the range of frequencies contributed by the motor. Finally, the platter itself, turning at $331 / 3 \mathrm{rpm}$, has a basic rumble frequency of about 0.5 Hz , with harmonics extending into the idler-wheel range.

The result is a broad band of nearly random vibration, covering the frequency range from 0.5 Hz to perhaps 100 Hz or higher, with certain frequencies being emphasized. A major source of this emphasis is the resonance of the tonearm mass with the stylus compliance, which usually lies between 5 and 10 Hz . At this frequency, the rumble output is often boosted by 5 to 10 dB . Belt-drive turntables, of course, do not have the rumble of an idler wheel to contend with, and the flexible belt filters out some of the motor vibration before it can reach the platter. Their rumble content thus tends to be concentrated at the motor frequency and its harmonics, and is often at a lower level than the total rumble of an idler-driven turntable (although there are numerous exceptions).
In recent years, direct-drive turntables have become quite popular. Since only one revolving element is involved (the platter and motor rotor, acting
as a unit), one would expect its rumble to be limited to the basic $0.5-\mathrm{Hz}$ rate, with some harmonics of that frequency. However, direct-drive motors have a number of discrete poles, causing their driving torque to pulsate slightly at a frequency much higher than the basic revolution rate. Depending on their design, they may have low-level rumble components at frequencies of 10,20 , or even 40 Hz .

Rumble is measured by playing a "silent groove" record and measuring the cartridge output voltage, through a preamplifier having standard RIAA equalization. The reference level is usually the cartridge output from a lateral (mono) recording at a velocity of $5 \mathrm{~cm} / \mathrm{s}$ at 1000 Hz , although some measurement standards are based on 7 or $10 \mathrm{~cm} / \mathrm{s}$ reference velocities, giving an apparent rumble improvement of 3 or 6 dB , respectively (rumble is expressed in decibels below the reference level).

Because of the greatly reduced sensitivity of the human ear at low frequencies, the audibility of rumble is very much a function of its frequency distribution. A $-30-\mathrm{dB}$ rumble at 60 or 90 Hz , for example, would be disturbing under almost any listening condition, whereas the same level at 30 Hz might not be audible, and at 10 Hz it certainly could not be heard. To account for this phenomenon, it is usual to weight a rumble measurement by placing a high-pass filter between the preamplifier output and the indicating meter.

Several different weighting curves are in use throughout the world. The DIN " B " characteristic is widely used in Europe and Japan, while in this country the CBS Audible Rumble Loudness Level (ARLL) weighting is often employed (we use ARLL weighting in our turntable tests). The same turntable, measured with different weighting curves, will appear to have very different rumble ratings, and it is not possible to convert a reading from one system to another. In general, the DIN "B" curve will give a lower apparent rumble reading than the ARLL curve, and will be 20 to 30 dB lower than an unweighted measurement. Either system, as well as several others that have been proposed and are in use, can be justified empirically by listening tests. Fortunately for the consumer, it is not the absolute numerical value of rumble that is important; so long as the same system is used, compärisons can be made between turntables without serious loss of accuracy.

Unweighted rumble readings (or the DIN "A" meapopular electronics

Count on Radio Shack to be right on top of 40 -channel CB, with the kind of full-featured values you've come to expect from our Realistic brand. The new TRC-452 gives you effective mobile communications over all 40 channels the original 23 and the new 17. No crystals to buy - it has a frequency synthesizer with phase-locked loop circuitry. That means ultra-precise frequencv control on receive and transmit and dependable service even under rugged on-the-road conditions. For 16 years

Realistic CB's have been designed to meet challenging conditions, and the TRC-452 is no exception. Adjustable RF gain for best reception of strong and weak signals. Switchable automatic noise limiter and adjustable squelch. Illuminated S/RF meter and channel selector. LED modulation indicator. With plug-in dynamic mike, universal mounting bracket, power cable for any 12 VDC positive or negative ground vehicle. Only $\$ 139.95^{*}$. So when you go 40-channel - go Realistic!
surement, which is very similar) also provide useful information. Rumble at sub-audible frequencies may not be heard directly, but can seriously degrade sound quality if it is strong enough. If the amplifier has extended low-bass response (down to a few Hz or to dc) these rumble frequencies can overload the amplifier or move the speaker cones beyond their linear range. The result is a muddying of the sound, caused by intermodulation distortion. This effect can be seen easily by removing the speaker grille cloth and observing the woofer cone while playing a record at a fairly high volume. The sub-sonic "bobbling" of the cone is a clear indication of rumble, even if it cannot be heard. Do not confuse this with the $0.5-\mathrm{Hz}$ in-and-out motion of the cone caused by record eccentricity or warping. Although this can produce the same effect, it is not the fault of the turntable.

It is difficult to state categorically how much rumble is "acceptable." This is a function of room and speaker characteristics, listening volume, and personal opinion. In general, a turntable with an unweighted rumble level of -30 dB or better, and a weighted rumble level below -50 dB , will not contribute significant audible rumble to the program (many records have inherent low-frequency noise that will mask turntable rumble below these levels). If your records are good, and the speakers have a useful response down to 30 or 40 Hz , it might be advisable to look for a turntable with an unweighted rumble of -35 dB or less, and a weighted rumble (ARLL) of -50 to -60 dB , which is typical of some of the better belt-drive players and most direct-drive turntables. Still lower rumble levels can be had, at a price, but do not expect to hear the difference.

About This Month's Reports.

In contrast to recent trends toward technical sophistication in record players, Empire's new Model 698 might be considered as a modern classic. Its only concession to such competitive pressures is an electronically actuated cueing system, which also lifts the arm at the end of a record. Otherwise, it is based on the proven, reliable belt-drive system that has been used in previous Empire players with eminent success. A heavy, finely machined platter, driven by a carefully balanced synchronous motor, results in rumble and flutter levels comparable to, and in some cases lower than, those achieved by much more elaborate means. As always, simplicity is a virtue, and nothing could be more simple and direct than the Empire approach. The major improvement in the 698, compared to previous Empire models, is the drastically reduced arm mass which makes it compatible with today's high compliance cartridges.
Not everyone needs, or can afford, one of the "super power" stereo receivers offered by several manufacturers. The Sherwood S-7910 has most of the operating features, to say nothing of advanced performance, of much more costly products. Its conservative 60 watts per channel is more than sufficient for the majority of home listening requirements. Its FM tuner section is especially noteworthy. Among other assets, it has the greatest stereo channel separation we have yet measured on a tuner or receiver, and a tuning indicator light that glows brightly when the tuner is accurately centered on the station frequency (there are two meters, as well, for those who prefer to use them, but the light is faster and easier to use and at least as effective).

EMPIRE MODEL 698 RECORD PLAYER

Aesthetically pleasing, precisely constructed manual turntable.

Empire Scientific has long been known for its distinctively styled manual record players. The latest version, the Model 698, looks very much like its predecessors, but it has been given a new lowmass tonearm and an electronically con-
trolled cueing lift system. The player's turntable is basically unchanged from earlier models. It employs a heavy-duty hysteresis synchronous motor and beltdrive system that offers the user a choice of $331 / 3$ and 45 rpm speeds.

All visible metal parts of the record player, including the motorboard, platter, and tonearm, are handsomely finished in satin gold. This is complemented by a wooden walnut base and a walnut and clear-plastic hinged dust cover that remains open at any angle. The record player measures $171 / 2^{\prime \prime} \mathrm{W} \times 151 / \mathrm{s}^{\prime \prime} \mathrm{D} \times$ $83 / 16^{\prime \prime} \mathrm{H}(44.5 \times 38.4 \times 20.8 \mathrm{~cm})$ and weighs slightly less than $30 \mathrm{lb}(13.5 \mathrm{~kg})$. The market value of the player, less cartridge, is $\$ 400$.

General Description. The turntable platter features two-piece construction. Its massive central disc is almost $3^{\prime \prime}$ (7.6 cm) thick and is coupled to the motor by a precision-ground belt. A larger-diameter ring-like platter that contains the
ribbed record mat fits over the central disc. This ring also contains the stroboscope markings. The total weight of the platter system is more than $7 \mathrm{lb}(3.2 \mathrm{~kg})$. Although the operating speeds are basically fixed (changed by removing a cover retained by a thumbscrew and manually shifting the belt to a different pulley on the motor shaft), a small change in speed is possible by slight adjustment of a screw that tilts the motor's axis.

The tonearm measures $9^{\prime \prime}(22.9 \mathrm{~cm})$ from pivot to stylus. It has a newly designed cartridge shell that is easily detached for cartridge installation. The mass of the shell is claimed to be comparable to the mass of fixed shells, accomplished through extensive slotting to remove material. The design of the shell permits adjustment of the cartridge's position for correct overhang. The counterweight, which slides on the rear of the tonearm's tube for balancing, is decoupled by an elastic bushing to damp out the low-frequency resonance.

WIRE WRAPPING TOOL
For AWG 30, . 025 " ($0,63 \mathrm{~mm}$) sq. post, "MODIFIED" wrap, positive indexing, anti-overwrapping device

OK MACHINE \& TOOL CORPORATION
3455 Conner St., Bronx, N.Y. 10475 / (212) $994-6600 /$ Telex 125091

WIRE WRAPPING TOOL
For AWG 30, . 025 " ($0,63 \mathrm{~mm}$) sq. post, "MODIFIED" wrap, positive indexing, anti-overwrapping device.

OK MACHINE \& TOOL CORPORATION
3455 Conner St., Bronx, N.Y. 10475 / (212) $994-6600$ / Telex 125091

The vertical tracking force is applied to the balanced tonearm by a calibrated clock spring that is wound around the vertical pivot. It is adjusted by a knurled wheel on the pivot structure. Calibrations are from 0 to 4 grams at 0.5 -gram intervals. A dial on top of the pivot housing is for adjusting the antiskating force.

The cueing mechanism is operated by a damped dc solenoid whose motion is initiated by a mere touch of the finger on one of two pairs of closely spaced contacts on the motorboard. No pressure is necessary; the bridging of a pair of contacts by the finger triggers electronic circuits that energize the cueing mechanism. A red light behind each pair of contacts indicates the status of the armlifting mechanism, either up or down. At the end of play, a beam of light shining on the photocell under the motorboard is interrupted by a vane that moves with the tonearm. This causes the tonearm to automatically raise from the record's surface. It does not return to its rest post. The arm must be returned and the motor must be shut off manually. A rocker switch controls all power to the record player.

As with earlier Empire record players, the tonearm and turntable of the Model 698 are rigidly mounted to a Y-shaped ribbed casting and the entire system is resiliently floated from the motorboard. This isolates the tonearm and turntable from motor vibration as well as from external shock and vibration. The motor is, in turn, suspended on rubber bushings from the motorboard. A socket under the tonearm receives one of the two plug-in signal cables supplied with the record player. For stereo operation, the longer $5^{\prime}(1.5-m)$ cable is used. This cable has a nominal capacitance to ground of 180 $\mathrm{pF} /$ /channel, which, combined with the input capacitance of a typical preamplifier, will load the phono cartridge with approximately 250 pF of capacitance. If a CD-4 cartridge is used, the $4^{\prime}(1.2-\mathrm{m})$ cable, whose nominal capacitance is 70 pF for a recommended 100-pF maximum capacitance for CD-4 cartridges, is used.

Laboratory Measurements. We tested the record player with Empire's top-of-the line Model 20002 phono cartridge installed in the tonearm shell. After we balanced the tonearm in the horizontal plane according to instructions, the actual vertical force was about 15% less than the dial indication. We then adjusted the counterweight to correct the error, which yielded exact agreement with the calibrations over the full range
of the dial. We noted, however, that at the zero setting, the pickup stylus rested in the plane of the record, well below the horizontal.

We adjusted the overhang by aligning the stylus with the end of the cartridge shell as detailed in the instructions. This is an uncertain procedure because of the considerable distance between the stylus and the reference line, which atmost inevitably leads to parallax error. However, when we made the adjustment carefully, the tracking error was extremely low, measuring zero at $3^{\prime \prime}$ and $5^{\prime \prime}$ radii and less than $0.4^{\circ} / \mathrm{in}$. between $2.5^{\prime \prime}$ and $6^{\prime \prime}$. The antiskating force had to be set slightly higher than indicated by the tracking force setting, to 2 grams at a 1-gram tracking force, for equal tracking effectiveness on both channels of a 30$\mathrm{cm} / \mathrm{s}, 1000-\mathrm{Hz}$ test record. Since less compensation will be required at lower velocities, we consider the antiskating calibration to be sufficiently accurate for its purpose.

The lift and descent of the cueing mechanism were both slow and well damped, with little tendency for the pickup to drift outward during descent. About three seconds were required for the tonearm to lift or descend completely once movement began. However, there was an appreciable delay between the time the contacts were touched and the time the tonearm began to move.

The measured capacitance of the two signal cables, including the wiring in the tonearm, was 175 and 85 pF . Because of the action of the elastically mounted counterweight, the resonance of the tonearm with the Model 2000 Z cartridge installed exhibited two small peaks. One was at 5.5 Hz and the larger, at 8 Hz , had an amplitude of about 6 dB .

The operating speeds were exact and did not detectably vary with line changes from 95 to 135 volts. The combined unweighted rms wow and flutter was 0.04%. The weighted rms flutter of 0.03% was about as low as we have ever measured and is quite possibly at the residual level of the test records we used. The unweighted lateral rumble was -36 dB , which improved to -57 dB with ARLL weighting.

When we vibrated the entire record player through its mounting feet (which are rigidly attached to the wooden base), it displayed average isolation of the pickup system from external vibration.

User Comment. In contrast to the almost "ready-to-play" condition of some record players as they are unpacked,
the Empire Model 698 must be largely assembled by the user. In particular, the tonearm must be mounted and carefully adjusted for height and horizontal orientation (in order for the automatic end-ofplay arm lift to operate correctly). This is not difficult, especially since the instructions are complete and clearly written, but it is no job for a neophyte, either. As we have noted, the tonearm should be balanced somewhat below the horizontal with cartridge overhang adjusted with the greatest care to avoid parallax errors.

We found the visibility of the tracking force dial calibrations to be rather poor because of their location on the rear "inside" portion of the pivot support, but this is only a one-time per cartridge adjustment. If you are accustomed to "splitting grams" in setting up a cartridge, the 0.5 -gram calibration intervals may seem wide. Fortunately, few cartridges must be set up closer than 0.25 grams from an optimum force, which can be easily interpolated from the dial scale.

When it is properly set up, the Model 698 is one of the most aesthetically pleasing, precisely constructed record players obtainable. Records must be played manually, since the mechanism does nothing automatically except to raise and lower the tonearm (and the long wait for the arm cueing system to go into action tends to discourage its use). As far as "specifications" are concerned, the record player clearly excels in its low flutter. If lower flutter figures are possible, we doubt they could be measured with commercially available test records.

Our measurements show rumble to be about as good as any belt-driven turntable we have seen and nearly equal to the better direct-drive units. The ARLL weighted figure of -57 dB represents essentially inaudible rumble, which will be masked by the rumble and low-frequency noise inherent in most records.

A spectrum analysis of the rumble output shows a major component at about 8 Hz (tonearm resonance) and a single, almost discrete component at about 30 Hz (motor revolution frequency). Note that the RIAA equalization which we use, and which is part of the ARLL weighting, boosts the $30-\mathrm{Hz}$ level by about 18 dB .

Should the record player be located in an area that causes excessive physical vibration from, say, poor flooring, to reach the system, we recommend installing acoustic isolation mounts. These are available from Audio-Technica
(AT-605 Audio Insulator) and Netronics ("Acoustic-Mount").
In sum, the Empire Model 698 is a beautifully constructed and finished
product, one of the few remaining truly manual record players. It should be able to extract the fullest measure of performance from any cartridge and record. it
is certain, too, that no one will wish to hide it from view since it is one audio product that looks as good as it sounds.

CIRCLE MO. 80 ON FREE INFORMATION CARD

SHERWOOD MODEL S-7910 STEREO RECEIVER

Top performer in upper-medium price class.

The full-featured Model S-7910 is just one notch removed from the top of the Sherwood line of stereo receivers. It is rated to deliver at least 60 watts/channel into 8 -ohm loads between 20 and $20,000 \mathrm{~Hz}$ with less than 0.1% total harmonic distortion (THD).

This receiver has several interesting features. Its 4 CH ADAPTER facility duplicates the functions of a tape-monitoring circuit, which makes it possible to connect a total of three tape decks into the system. This adapter circuit is isolated to prevent interaction with the two main tape circuits. Located before the VOLume, balance, and tone controls, this facility appears to be an ideal place to connect a Dolby decoder for FM reception, although the user manual makes no mention of this. The FM tuner has lin-ear-phase ceramic i-f filters, PLL (phase-locked-loop) multiplex demodulator, and a Sherwood-developed "digital detector" that never requires alignment and is inherently highly linear and immune to amplitude-modulated signals and noise. The digital detector appears to be a pulse counter detector, judging from the limited information supplied. The three-stage phono preamplifier employs a differential amplifier as its input stage.

The receiver measures $241 / 2^{\prime \prime} \mathrm{W} \times 15$ $5 / /^{\prime \prime} \mathrm{D} \times 57 / 8^{\prime \prime} \mathrm{H}(54 \times 40 \times 15 \mathrm{~cm})$ and weighs $34 \mathrm{lb}(15.5 \mathrm{~kg})$. Supplied with a walnut-veneered cabinet, it is available in AM/stereo FM and FM-only versions as the Models S-7910 and S-8910 for $\$ 500$ and $\$ 475$, respectively.

General Description. The receiver is handsomely styled, with the upper half of the front panel devoted to the dial scales, tuning meters, and the large
vOLUME and TUNING knobs. Just below the dial scales are six small pushbutton switches that can be used to change the FM deemphasis from 75 to 25μ s for use with an external Dolby noise-reduction system, engage and disengage the FM muting, allow the receiver to respond to only stereo FM broadcasts, insert an external 4-channel adapter into the signal path, and switch in and out the loud-ness-compensation circuit.
Illuminated legends appear above the blue dial scales in red to indicate the selected input and when a stereo FM broadcast is being received. Between the signal-strength and FM center-channel meters is a red LED (Sherwood's "Positune" feature) that glows when an FM signal is properly tuned.
The control panel is finished in satin gold, and related groups of controls are enclosed with thin black lines. The sELECTOR switch has positions for PHONO 1, PHONO 2, FM, AM, and AUX inputs. The MODE switch permits selection of either the left or the right channel inputs through both outputs, normal and reversed stereo, and mono ($L+R$) operation.
The bass and treble controls are both detented at 11 positions. A lever switch is provided for bypassing the tone controls entirely. To the right of the tone controls are the bALANCE control and a stereo headphone jack. At the far right of the control panel is the speakers switching arrangement, which activates either, both, or neither of two pairs of speaker outputs. If the second pair of speaker systems is located in the rear of the listening room, the ARS (Ambience Retreival System) position of the sPEAKERS switch connects them in an ambi-ence-recovery configuration to simulate 4-channel sound from 2-channel sources. The pushbutton POWER switch is located near the SPEAKERS switch.

At the lower left of the panel are the tape-monitoring and tape-recording controls. The mONITOR lever switch can be used to connect the receiver's amplifiers to the playback from either of two tape decks or to the selected program source. A similar dubbing switch interconnects the two tape decks for copying tapes from either one to the other-without interrupting listening to the selected program. Two stereo phone jacks on the front panel parallel the TAPE 2 inputs and outputs on the rear apron for convenience in taping with a recorder that is not permanently connected into the system.

On the rear apron, the various input and output jacks are supplemented by separate PRE OUT and MAIN IN jacks that are connected together in normal operation with a slide switch. Setting the switch to its alternate position opens the signal path for separate access to the outputs of the preamplifier and inputs of the main-amplifier sections so that an active crossover network or other accessory can be inserted into the system. A DIN socket duplicates the functions of the TAPE 2 circuits.

A slide switch near the PHONO 2 jacks provides a choice of three sensitivities to accommodate phono cartridges that have widely differing output signal levels. (The PHONO 1 sensitivity is the same as the highest sensitivity of the PHONO 2 input.) Spring-loaded speaker terminals eliminate the possibility of shorted wires because they require insertion of the stripped wire into small holes in the connector. In addition to the 75- and 300ohm FM antenna terminals and a terminal for a wire-type AM antenna, there is a hinged and pivoted AM ferrite-rod antenna. There are three accessory ac outlets, two of which are switched.

The output transistors of the amplifier section and the speakers are protected against damage by a fast-acting relay that also provides a turn-on time delay of several seconds. The transistors and their heat sinks are located entirely within the receiver, just inside the rear apron.

Laboratory Measurements. Following the usual one-hour precondition-

ing period at one-third rated power, the receiver's rear apron was quite warm, but its top was only mildly warm. The outputs clipped at 74.4 watts/channel into 8 ohms, with both channels driven at 1000 Hz . The 4 - and 16 -ohm outputs were 97 and 46.6 watts, respectively.

The total harmonic distortion (THD) of the audio amplifiers was very low. It was a barely measurable 0.005% at 0.1 watt and less than 0.01% up to 17 watts output. It was only 0.022% at the rated 60 watts and 0.13% at the clipping output of approximately 75 watts. The intermodulation distortion (IM) was between 0.022% and 0.033% from 0.1 to 20 watts, 0.067% at the rated 60 watts, and 0.1% at 75 watts. At rated output, the THD was between 0.02% and 0.03% from 20 to 7000 Hz . It increased to 0.071% at $20,000 \mathrm{~Hz}$. At lower power outputs, the THD was less at all frequencies, being typically about 0.01% at usable frequencies and power levels.

The amplifier required an AUX input of 66 mV to develop a reference output of 10 watts, with a S / N ratio of 75.5 dB . The PHONO 2 sensitivity was $0.76,1.5$, or 3.3 mV for a 10 -watt output, depending on the setting of the sensitivity switch on the rear apron. It was 0.76 mV through PHONO 1. The phono S / N ratio was 72.6 dB , and the phono overload points were unusually high at 190,380 , and 805 mV for the three settings of the sensitivity switch.

The tone controls had a rather moderate range of 8 to 9 dB maximum boost and a cut of 13 dB at the frequency extremes. The Baxandall (feedback) type BASS control had a varying inflection point that shifted from below 100 Hz to about 500 Hz as it was advanced toward its extremes. (The treble curves were hinged at about 2000 Hz .) The high-cut filter had the desirable $12 \mathrm{~dB} /$ octave slope, with its $-3-\mathrm{dB}$ point at 4700 Hz . It was effective in reducing noise, with surprisingly little effect on the audible program content.

The loudness compensation boosted both lows and highs, the former being in-

Frequency response and crosstalk averged for both channels in stereo FM.
creased below 500 Hz to a maximum of +11 dB below 50 Hz at most reduced settings of the volume control. The RIAA phono equalization was accurate to within $+1 /-0.5 \mathrm{~dB}$ from 20 to $20,000 \mathrm{~Hz}$ (within $\pm 0.5 \mathrm{~dB}$ from 100 to $20,000 \mathrm{~Hz}$). The cartridge inductance had only a slight effect on the frequency response, with an increase in output (instead of the usual decrease) beginning at about 4000 Hz and reaching a maximum of only 1 dB at 15,000 to $20,000 \mathrm{~Hz}$.

The FM tuner had an IHF usable sensitivity in mono of $12 \mathrm{dBf}(2.2 \mu \mathrm{~V})$. In stereo, it was $17 \mathrm{dBf}(4 \mu \mathrm{~V})$, which was also the threshold for automatic stereo operation. The steep limiting curve gave a $50-\mathrm{dB}$ quieting sensitivity of 16.5 dBf ($3.7 \mu \mathrm{~V}$) in mono with 0.3% THD. In stereo, it was $37 \mathrm{dBf}(39 \mu \mathrm{~V})$ with 0.4% THD. At a $65 \mathrm{dBf}(1,000 \mu \mathrm{~V})$ input, the S / N was 68.5 dB in mono and 66 dB in stereo, with respective distortion levels of 0.12% and 0.21%. The stereo distortion with 100% L - R modulation of the signal generator at a $65-\mathrm{dBf}$ level was 0.38% at $100 \mathrm{~Hz}, 0.14 \%$ at 1000 Hz , and 0.1% at 6000 Hz .

The FM frequency response was very flat over the full range, varying by only +0.5 to -0.3 dB from 30 to $15,000 \mathrm{~Hz}$. The stereo channel separation was extraordinary, by far the best we have yet measured for a tuner. It was 60 dB or
better from 135 to 7000 Hz , reached an unbelievable 68 dB at 400 Hz , and was better than 45 dB over the full 30 to $-15,000-\mathrm{Hz}$ range. Doubting our measurements, since even a $50-\mathrm{dB}$ separation is unusual in a tuner, we rechecked this several times, but all the measurements agreed. The AM frequency response, within $\pm 1.5 \mathrm{~dB}$ from 20 to 2800 Hz and down 6 dB at 3700 Hz , was typical of the AM sections of most receivers, although the AM section of this receiver did sound better than many we have heard.

Other FM-tuner performance parameters included: capture ratio of 1.2 dB at 65 dBf , with a very good 73-dB AM rejection; image rejection of 80 dB ; alternate channel selectivity of 60 dB (with perfectly symmetrical response about the center frequency, a rather unusual occurrence in FM tuners); and adjacent channel selectivity of 5.8 dB . The muting and stereo thresholds were identical at about $17 \mathrm{dBf}(4 \mu \mathrm{~V})$. In spite of the almost perfect response flatness up to $15,000 \mathrm{~Hz}$, the $19-\mathrm{kHz}$ pilot carrier leakage into the outputs was a very low -68 dB and the tuner hum was -66 dB .

User Comment. From its features and general performance, it is obvious that the Model S-7910 receiver will be a formidable competitor in the uppermedium price class. Although more power is available (from Sherwood as well as other manufacturers) at considerably higher prices, it is doubtful if most people would ever notice the difference. Certainly a conservative 60 watts of essentially distortionless audio across the full frequency range is more than enough even for most low efficiency speakers in typical home environment.

All the controls operated very smoothly. The FM muting was positive and tran-sient-free. The dial calibration was accu-

Noise and sensitivity curves for FM section.

Total harmonic distortion and 60/70,000-Hz IM distortion.
rate, with a maximum error of about 100 kHz (less than the width of the pointer). The "Positune" FM tuning indicator appeared to duplicate the function of the center channel tuning meter. The LED came on only when the meter pointer was centered on the meter's scale, signifying correct FM tuning. However, the LED is much easier to see, especially at a distance.
The sound was all one could expect from a receiver having this order of per-
formance. Since the actual channel separation of FM broadcasts is far less than the capability of the receiver, it is unlikely that one would ever notice the 60-dB isolation between channels, but you can always be assured that you will never hear crosstalk. With almost any cartridge one might use, the most sensitive setting of the phono switch will be more than adequate in avoiding input overload. In most cases, this switch will be used to balance the levels of the phono
and tuner sections. It is nice to know that no combination of cartridge and record can come close to the overload limits of the preamplifier.

At a time when receivers in the $\$ 750$ to $\$ 1000$ price range are almost common, it is reassuring to find one priced less than $\$ 500$ that will match just about any of them in performance and control features, to say nothing of sound quality though with lower power output.

CIRCLE No. as on free information card

Energy shortages tell us we have to change our driving style.

Now! It doesn't mean we have to go back to horse and buggy days. But it does mean we have to make
every drop of gas give us the most go for our money. Anyone with horse sense knows that a well-tuned car gets better mileage, and in times of fuel shortages, better mileage means a lot. The Mark Ten B Capacitive Discharge System keeps your car in better tune so it burns less gas. Using Mark Ten B is more than horse sense. It's the

FIGFIIIGEITS

Film Stars Robot

A computer-controlled robot is the star of a new film entitled, "Hierarchical Control." The film, which runs for 20 minutes, demonstrates computer control techniques developed by the U.S. Commerce Department's National Bureau of Standards and how they can best be used in the automation of factories. Using simple performance tasks including stacking blocks and inserting a pin in a hole, the movie analyzes the improvements on programming speed as higher levels of control are added. The film will be made available on free loan. Write: National Bureau of Standards, Office of Developmental \& Control Technology, A130, Technology Building, Washington, D.C. 20234.

FCC to Test Warehoused CB Models

Under a precedent-setting program set up by CEDA (Communications Equipment Distributors Association), representatives from FCC Field Engineering Offices will be able to select a CB radio from a participating CEDA member's warehouse and test it to see if it meets current type-acceptance standards. Although the FCC has long wanted to test the radios that consumers actually buy, rather than testing only those submitted by manufacturers, they lacked the budget to carry out such a program. The FCC said late last year that they plan to take full advantage of CEDA's program 'after the first of the year, when 40 -channel radios are offered for sale and the new transmitter and receiver specifications take effect."

EIA Reports Imports "Up"

For the first nine months of 1976, U.S. imports of consumer electronics equipment have increased, according to the Electronic Industries Association (EIA). Total TV receiver imports are up 95.3%, with total color up 156.2% and monochrome up 67.4%. Home radios are up 21.7%, and automobile radios are up 37.4%. Phonographs increased 123.9%; record players, changers, and turntables are up 45.9%; total tape equipment (play/ record), 67.1%; and play-only tape equipment, 79.2%.

Marine Radiotelephone Misuse

The widening use of full-channel vhf/FM radiotelephones has increased the incidents of boatmen selecting improper radio channels, according to the Radio Technical Commission for Marine Services. Channel 13 has been set aside for communications directly between the masters and pilots of approaching vessels. But the reserved radio channel is in jeopardy as pleasure boatmen increasingly attempt conversations on channel 13. The Commission encourages recreational boatmen to listen to channel 13 when in the vicinity of large ships that are maneuvering, but notes that they should limit any radio contact to that necessary for safe passage of the commercial vessels.

More Computer Stores

In December 1975, Paul Terrell opened his first Byte Shop in Mountain View, Cal. Thanks to the tremendous growth of the hobby computer market, Terrell anticipated, at the end of last year, a total of 34 Byte Shops to be in operation by Christmas of 1976. . . The success of existing computer stores has also prompted Semiconductor Specialists, Inc., an industral distributor, to announce entry into the computer hobbyist market. The company plans to establish MPU Shops at all 12 of its U.S. locations, the first in the Chicago area. The MPU Shops will have working models of five $\mu \mathrm{P}$ kits, three unassembled kits, and four additional $\mu \mathrm{P}$ chips not in kit form. Two complete developmental systems will be available, and books, power supplies, tape readers, and accessories in kit form will be carried. . . . Close behind is the Computer Shack, a retail store devoted to only personal $\mu \mathrm{C}$'s and peripherals and interfaces. President Ed Faber of Computer Shack, Inc., projects a nationwide chain of 100 franchised Computer Shack retail stores by the end of 1977. Plans are to provide complete sales and service for the computer hobbyist, educational , and business user and feature a broad line of $\mu \mathrm{C}$'s and modules, books, tools, and comprehensive line of accessories. In addition, each Computer Shack will have its own game room where customers can operate $\mu \mathrm{C}$'s and peripherals in various games of skill, according to a company spokesman.

TV Process Converts B\&W to Color

Imagine Shirley Temple, the Marx Brothers, and the original King Kong in full-color TV motion pictures. B.J.A. Systems Inc. has devised a process that is said to transform monotone scenes into clear, bright, realistic color images. The colorizing process is accomplished through a combination of electronic color generation, video animation, and artistic skill. Basically, B.J.A.'s artists assign color based on grey level information in the B\&W TV or video signal. Using a combination of analog and digital techniques, the operator can color an entire scene. The result is a full-color version of previous monochrome footage on broadcast-quality tape or video cassette.

WWV \& WWVH Broadcast Changes

The National Bureau of Standards (NBS) plans to discontinue broadcasting on $2.5,20$, and 25 MHz from WWV and 20 MHz from WWVH. All broadcasts from these standard time and frequency shortwave stations on other frequencies will continue unchanged in power and format. The reduction in the number of frequencies is expected to commence February 1, 1977. The frequencies are being dropped in a cost-saving move.

Shakesperiés
White lnieht. The

Shakespeare comes on strong for the new 40 channel era. With high performance CB antennas that turn on the power on all 23 or 40 channel CB transceivers.

Shakespeare's new White Knight Antenna combines the rugged, mechanical strength of gleaming white fiberglass with precision engineered electronic components. Components like the high quality loading coil permanently fused in a solid polycarbonate thermoplastic base. Totally impervious to the environment. And pre-tuned to an SWR of 1.9 to 1 or less over the 40 channel band (1.3 to 1 or less at the center). To assure maximum range and peak performance everytime you key the mike. That's what sets the White Knight antenna apart from all the others.

Ride full tilt into the 40 channel era with the new White Kright CB Antenna. And take the Shakespeare performance route home.

The White Knight Antenna, Style 4125/available in a variety of pre-assembled mounting styles. Complete with cables and connectors. Under \$25.

Shakegpeare
\square
Coming on strong for the Initghts of the Road.

[^1]
 \title{

NRI BRINGS "POWER-ON"
 \title{ \section*{NRI BRINGS "POWER-ON" TRAINING TO YOUR HOME... TRAINING TO YOUR HOME... FOR QUICKER, EASIER FOR QUICKER, EASIER LEARNING AND LEARNING AND FASTER EARNING}

 FASTER EARNING}}

You get trouble-shooting experience from the chassis up . . . with NRI's unique training equipment.
The 'firsts" described here are typical of NRI's over 63 years of leadership in electronics home training. When you enroll as an NRI student, you get the technical knowledge and the priceless confidence of "hands-on" experience sought by employers in communications, TVaudio servicing, computers, and industrial and military electronics. NRI training is designed for your education . . . from the educator-acclaimed Achievement Kit sent the day you enroll, to bite-size, well illustrated, easy-to-read lessons programmed with designed-for-learning training equipment.
NRI Firsts make learning at home fast and fascinating. More than a million have come to NRI for home training. More than a milion have come to NRI for home training
Professional TV/Audio technicians who learned their profession through home training rate NRI as first choice by far, over any other school.

SEND FOR THE FREE FULL-COLOR CATALOG . . . for full details on NRI home training. There is no obligation . . . no salesman will call.

First and only school with designed-for-learning Quadraphonic Audio Center with four SP14 speaker systems. This solid state $\mathrm{SQ}^{\text {"w }}$ system is designed so that you perform meaningful experiments at every stage of assembly... for thorough training in audio technology.

First and only school with new Optical Transmission System engineered to allow you to analyze digital and analog signal transmission via light beam. Systems you build use LED and phototransistor technology, simulating basic principles of laser communications as used in video disc home entertainment systems.

First and only school with designed-for-learning 25" diagonal solid stateCoior TV complete with cabinet. This solid state set was designed by NRI's own engineers from the chassis up so that students can perform over 25 in-set experiments during construction, including valuable
"Power-On" trouble-shooting

First and only school with a portable CMOS digital frequency counter engineered by NRI to give you experience in the newest types of digital systems coming into expanded use in consumer electronics.

Flrst and only training with an actual programmable digital computer to give you the only home training in machinelanguage programming . . . essential to trouble shooting digital computers. Extra Memory Expansion Kit doubles memory size for practice in advanced programming techniques.

First and only school with a solid state regulated power supply engineered by NRI to give you experience with modern power supply designs; to give you a premium power supply for your NRI Transceiver, or to use in troubleshooting mobile equipment.
 First and only school with an Antenna Applica- \quad tions Lab engineered to give you a thorough understanding of practical communications antenna requirements. You assemble and test several different types of antennas and matching sections, measuring gain and radiation patterns.

First and only school with designed-forlearning, 400-channel, digitallysynthesized VHF Transceiver to give you the only fully-up-to-date 2-meter equipment for complete training in commercial, amateur, and CB communications. The design incorporates circuitry and components representative of the latest state of the art. Circuitry is on five plug-in circuit cards to take full advantage of NRI "Power-On" training.

If card is missing, write to:

NRI Schools
McGraw Hill Continuing Education Center
3939 Wisconsin Ave.
Washington, D.C. 20016

WHY SETTLE FOR LESSTHAN A 6800 SYSTEM

MEMORY-

All static memory with selected 2102 IC's allows processor to run at its maximum speed at all times. No refresh system is needed and no time is lost in memory refresh cycles. Each board holds 4,096 words of this proven reliable and trouble \longrightarrow free memory. Costonly $\$ 125.00$ for each full 4 K memory.

INTERFACE-

Serial control interface connects to any RS-232, or
20 Ma . TTY control terminal. Connectors provided for expansion of up to eight interfaces. Unique programmable interface circuits allow you to match the interface to almost any possible combination of polarity and control signal arrangements. Baud rate selection can be made on each individual interface. All this at a sensible cost of only \$35.00 for either serial, or parallel type

PROCESSOR-

"Motorola" M6800 processor with Mikbug ${ }^{\circledR}$ ROM operating system. Automatic reset and loading, plus full compatability with Motorola evaluation set software. Crystal controlled oscillator provides the clock signal for the processor and is divided down by the MC14411 to provide the various Baud rate outputs for the interface circuits. Full buffering on all data and address busses insures "glitch" free operation with full expansion of memory and interfaces.

DOCUMENTATION-

Probably the most extensive and complete set of data available for any microprocessor system is supplied with our 6800 computer. This includes the Motorola programming manual, our own very complete assembly instructions, plus a notebook full of information that we have compiled on the system hardware and programming. This includes diagnostic programs, sample programs and even a Tic Tac Toe listing.

Mikbug ${ }^{(8)}$ is a registered trademark of Motorola Inc.

Computer System
with serial interface and 4,096 words
of memory.\$395.00

BOCND =9

Seven-segment LED readouts indicate speed from 1 to 99 miles per hour.

AMONG the popular bicycle accessories is the bike speedometer. This is usually a friction-producing device with an analog readout. Consequently, the cyclist has to pedal somewhat harder to overcome the friction, and the speed indicator's calibration markings are difficult to read. The digital speedometer described here overcomes these objections.

This low-cost digital LED-display speedometer incorporates a frictionless method of counting wheel revolutions and converting them to bike speed. It counts pulses when a pair of magnets mounted diametrically opposite each other on the rim of the front wheel pass a reed switch mounted on the front-wheel fork. The speedometer's electronic circuit is economical to operate since re-
chargeable nickel-cadmium cells supply the power.
The speedometer is capable of accurately indicating speeds from 1 to 99 mph . This is determined by the number of times the wheel rotates in a particular time interval. For example, a 27 -inch diameter wheel will go through 745.96 revolutions in one mile. If the wheel is rotating at one mile per hour, it makes one revolution in 4.819 seconds. If the digital counter that is driven by the reed switch is allowed to accumulate the pulses for 4.819 seconds, the count represents the speed in miles per hour. In this project, two magnets, mounted diametrically opposite on the wheel, produce a time interval of 2.409 seconds, so a reed switch count of 5 (for example) in 2.409 seconds equals a speed of 5 mph .

The reed switch is used to drive a pair of conventional digital decade counters, each having a 7 -segment LED readout, with the carry of the first (units) counter driving the second (tens) counter.

The speedometer uses two sevensegment LED displays for numeric presentation. Its magnetic pickup is a simple open-close scheme for operating the reed switch to "pulse" the input counter in the circuit. A timing circuit sets up the correct latching and reset intervals, and a novel calibration scheme lets you use
the speedometer with almost any bicycle wheel diameter. In addition, details are given on how to build a battery recharging circuit.

About the Circuit. The speedometer, shown schematically in Fig. 1, employs two decades of digital counting. Each decade contains a single IC that has a binary counter, latch, BCD-to-sev-en-segment decoder, and LED display driver all in one package. The carry output of IC1 (pin 22) is used to drive IC2. The values of current-limiting resistors R8 through R21 are selected as a compromise between minimum current and acceptable brightness of the LED displays under high ambient light conditions. Resistor R22 serves as a protective device in the event of accidental segment-to-ground shorting.
System timing is provided by half of dual timer IC3. The timing period is determined by the setting of calibration potentiometer R2. The output pulse from the timer half of IC3. serves as the latch signal for the two decade counters. The trailing edge of this pulse is differentiated by C2 and R4, inverted by Q1, and then used as the reset pulse for the counting system.

The remaining half of IC3 is used as a free-running oscillator. The output from this oscillator is coupled through C9 to calibration switch $S 3$. When the speedometer is operating, and before the bicycle wheel is placed in motion, depressing S3 substitutes the known frequency of the oscillator signal for the wheel-rotation signal and allows adjustment of timing potentiometer R2 until the display indicates the diameter of the bicycle wheel. This is the only calibration required by the speedometer. The values of $C 3, R 6$, and $R 7$ have been selected for an 11.2-pulse/second (pps) rate, which puts a 27 on the display (for $27^{\prime \prime}$ wheel diameter).
The input to the speedometer, via $J 1$, comes from the reed switch mounted on the front fork of the bicycle. The reed switch closes each time a magnet mounted on the rim of the wheel is in close proximity with it. When the input to IC1 (pin 2) is open, a high (logic 1) is assumed. When the reed switch closes, the input drops to zero (logic 0), and enters one count into IC1 for each closure.

Capacitor C7 at the input of IC1 debounces the reed switch, while capacitor C6 at the output of the first decade counter prevents the second counter from being incremented by more than one count for each carry pulse.
Power for the speedometer is provid-

Fig. 1. Each decade counter uses one IC that includes LED driver. IC3 provides latch and reset and is also calibration oscillator.

PARTS LIST

B1-Four 1.25 -volt AA-size nickel-cadmium cells in series
$\mathrm{C} 1, \mathrm{C} 3-5-\mu \mathrm{F}, 35-\mathrm{V}$ electrolytic capacitor
$\mathrm{C} 2, \mathrm{C} 4, \mathrm{C} 5-0.1-\mu \mathrm{F}$ disc capacitor
$\mathrm{C} 6, \mathrm{C} 7-10-\mu \mathrm{F}, 35$-volt electrolytic capacitor
C8- $180-\mu \mathrm{F}, 35$-volt electrolytic capacitor*
C9-180- $\mu \mathrm{F}, 35$-volt electrolytic capacitor D1-IN914 diode
D2 through D5-50-PIV, 1-A rectifier assembly or separate 1 N 4001 rectifier diode*
D6-6-volt, $1 / 2$-watt zener diode*
DISI,DIS2-Common-anode LED-type 7. segment display
Fl- $1 / 4$-ampere fuse*
II.I2-6-to-9-volt, $150-\mathrm{mA}$ indicator lamp (\#TS-47 or similar)*
IC1,IC2—SN74143
IC3-556 dual timer
J1-Phono jack
J2-Miniature phone jack
Pl-Phono plug
P2-Miniature phone plug*
Q1-2N2219 transistor
The following resistors are $1 / 2$-watt, 10% :

R1-120,000 ohms
R3-280 ohms
R4- 330 ohms
R5- 1000 ohms
R6- 390 ohms
R7-15,000 ohms
R8 through R21-680 ohms
R22-47 ohms
R2-500,000-ohm miniature potentiometer
SI-Reed switch (Radio Shack No. 275-1550 or similar)
S2-Spst switch
S3-Normally open, momentary-action spst switch
S4-Spst switch*
T1-12.6-volt, $300-\mathrm{mA}$ transformer*
Misc.-Two magnets (see text); enclosures for main circuit and recharger; 2-meter length of two-conductor cable: line cord*; perforated board; IC sockets (3); transistor sockets; solder clips; fuse holder*; metal U bracket; electrical tape; machine hardware; hookup wire; solder; etc.
*For recharger.
ed by four 1.25 -volt rechargeable nickelcadmium cells in series. The cells can be recharged, without having to remove them from the project, with the circuit shown in Fig. 2. You simply plug P2 on the recharger's output cable into J 2 on the speedometer, plug the recharger's
line cord into an ac outlet, and turn on the power.

Indicator lamps 11 and 12 in the recharger circuit are used to limit the charging current to a safe level. Zener diode $D 6$ maintains a constant 6 -volt charging potential.

Fig. 2. Conventional regulated power supply to recharge batteries.

Construction. There is nothing critical or difficult about assembling the speedometer and its battery charger. To simplify construction, the speedometer is best assembled on two perforated boards, one for the displays and the other for the remainder of the circuit. Use sockets for the transistor and IC's and solder clips for the passive components. Hookups between the two boards and the off-the-board components can be made with lengths of insulated stranded hookup wire.

Machine the enclosure that will house the speedometer by cutting out a display window and drilling holes for R2 and S3 in the front panel and drilling holes for $\mathrm{J} 1, \mathrm{~J} 2$, and S3 in the rear panel. Then, secure the battery holder for B1 to the floor of the case and mount a handlebar clamp on the bottom of the enclosure. Cement a red filter over the display window and mount the circuit board assemblies into place. Finally, connect the circuit board to the other components.

The simple recharger circuit shown in Fig. 2 can be assembled by any method you find convenient. House it in a suitable enclosure, making certain that no point on the primary side of $T 1$ touches the case or the circuit on the secondary side of the transformer. Mount $/ 1$ and $/ 2$ inside the case. (There is no need for these lamps to be mounted in holders.) The holes for the line cord and poweroutput cable should be lined with rubber grommets.

When both the speedometer and the recharger have been assembled and checked for proper wiring and soldering, charge the cells while you put together and mount the input assembly.

The reed switch should be cemented to a $1^{\prime \prime}$ long by $3 / /^{\prime \prime}$ square (25.4×9.53 mm) wood block. This block is then held in place on the bicycle's front fork by a metal U bracket. (See Fig. 3 for fabrication details.) Two magnets, such as those used for cabinet doors, should be cemented with epoxy to the rim of the

Photo shows how reed relay is clamped to fork holding front wheel of bicycle with magnets (one shown) on inner rim.
wheel 180° apart. Note: Do not mount the magnets on the wheel in locations where they will interfere with the caliper brake pads.

Wrap a few turns of electrical tape around the U bracket and mount the reed switch block in place as shown in photo. Once it is mounted, the reed switch block should be anchored rigidly to the front fork of the bicycle, and the reed switch should be oriented so that the magnets pass directly along its axis and within $1 / 4^{\prime \prime}(6.35 \mathrm{~mm})$ of it.

To test the input system, turn the bicycle upside down and connect an ohmmeter across the contacts of the reed switch. Slowly rotate the front wheel of the bicycle until one of the magnets passes the reed switch. As the magnet approaches the reed switch, the latter

Fig. 3. Details of mounting bracket for reed relay.
should close and produce a zero reading on the meter. As the magnet moves away from the reed switch, the contacts should open, and the meter's pointer should register infinity. Perform this test with both magnets. Then set the wheel to rotating slowly so that the magnets pass by the reed switch several times. With each pass of the magnets, the meter's pointer should momentarily deflect toward the low end of the scale.

With the battery pack inside the speedometer, mount the project to the handlebars of your bicycle and connect the reed-switch input to it via its cable. Now, to calibrate the speedometer, set the front wheel of your bicycle so that the reed switch is midway between the magnets. Depress calibration switch S2 and adjust timing control $R 2$ until the display indicates the wheel's diameter. Release S2, and you are ready to pedal away-but watch your speed.

FOR ELECHRONIC MUSTC'

A low-cost voltage-controlled oscillator with sine, triangle, square-wave and pulse outputs.

BY JAMES BARBARELLO

IFF YOU'RE an electronic music buff and are looking for an inexpensive but flexible VCO, this project is for you. Dubbed the $V-4$, it has four outputssine, triangle, and square waves and variable width pulses. It also boasts provisions for pulse-width modulation and front panel controls for sine-wave symmetry, triangle shifting, squarewave amplitude ànd pulse-train amplitude.

Furthermore, two V-4 voltage controlled oscillators can be used simultaneously to produce harmony effects when teamed up to an "input multiplier." The multiplier, which is also a part of this project, amplifies the input control voltage by a constant adjustable from one to two. This allows you to produce a fundamental tone from the first $V-4$ and a tone one octave above it or any fraction in between from the second.

About the Circuit. The schematic diagram of the $\mathrm{V}-4$ is shown in Fig. 1. It is a standard design using readily available components. Integrated circuit IC2, an Intersil 8038 VCO , is the heart of the project. Input stage IC1, a 741 op amp summer, processes the control voltage inputs (V_{C}) to produce a $0-\mathrm{Hz}$ output when V_{C} is zero. (Multiple inputs facilitate the use of special effects such as frequency modulation, etc.) Transistors Q1 and Q2 form a Schmitt trigger which converts the triangle output of IC2 into a pulse train with variable duty cycle.

The duty cycle of the pulses is determined by the setting of R16. Potentiometer R17 "trims" the input to the Schmitt
trigger so that minimum pulse width is obtained when R16 is set fully counterclockwise. The amplitude of the pulse train is govemed by R22. This control also determines the amount of hysteresis in the trigger, and therefore the minimum pulse width obtainable. For the specified component values, the duty factor is adjustable from approximately 0 to 50 percent.

Diodes D1 and D2 drop the supply voltage so that the potential difference from point B to ground $\left(V_{B}\right)$ can be matched at the output of IC1 $\left(\mathrm{V}_{\mathrm{A}}\right)$. This is done because the two voltages must be equal for an output frequency of zero Hertz. Resistor R12 insures that sufficient current will flow through the diodes to keep V_{B} constant as the current drain of IC2 varies.

The input multiplier shown in Fig. 2 is a noninverting amplifier whose gain is adjustable from unity to two. You will recall that, in the musical scale we most commonly use, the frequency of any note is the twelfth root of two or 1.059463094 times that of the previous note. So, if a note a perfect fourth above the fundamental is desired, the control voltage must be multiplied by 1.25992105 (the twelfth root of two raised to the fourth power). The input multiplier will do this when its gain is adjusted by means of potentiometer R26 in the feedback circuit of IC1B

Once this aural adjustment is made, all other tones produced will be a perfect fourth above that which would be produced at unity gain. A multiplier control input $\left(\mathrm{V}_{\mathrm{C}}\right)$ of more than 3 volts is not
useful (assuming an adjusted multiplier gain of two) because IC2 will not respond linearly with a control input of more than 6 volts. Resistors R6 and R24 are used to load the unused inputs of multiplier and input stages, respectively, while generating minimum output offset voltages. If the optional input multiplier is included in the project, a 747 dual op amp should be used: As indicated in Fig. 1 and 2, IC1 becomes IC1A, and the multiplier is IC1B.

Design Equations. You might have to vary some of the component values to suit your existing power supply and/or controller. Therefore, we will discuss the important design equations of the V-4. The output frequency of the 8038 is proportional to the quantity $\left(V_{B}-V_{A}\right)$. For a standard controller (nominally 0 to 5 volts), we want a 0 -volt input to cause V_{A} to equal V_{B}. We also want a 6 -volt input (20% overrange) to cause V_{A} to equal the quantity $(2 / 3)\left(V_{C C}-V_{E E}\right)$, where $V_{C C}$ and $V_{E E}$ are the positive and negative supply voltages, respectively. Any voltage greater than $(2 / 3)\left(V_{c c}-\right.$ $\left.V_{E E}\right)$ will cause the IC to act nonlinearly. For the circuit in Fig. 1, V_{A} equals $-K 1$ $\left(V_{C}\right)-K 2\left(V_{E E}\right)$. For the above constraints, $\mathrm{K} 1=\left(V_{B} / 6\right)-\left(\mathrm{V}_{\mathrm{CC}} / 18\right)=R 5 /$ $R 1$, and $\mathrm{K} 2=\left(\mathrm{V}_{\mathrm{B}} / \mathrm{V}_{\mathrm{EE}}\right)=R 5 / R 7$. For minimum offset voltage, R6 = R1 \|R5 || R7. Furthermore, $\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{CC}}-1.4 \mathrm{~V}$ and
$f_{\text {OUT }}=1.5\left(\mathrm{~V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}\right) / R 9 C 1\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$ $=1.5$ (R5/R1) $V_{C} /\left(2 V_{C C} R 9 C 1\right)$ when $\left|\mathrm{V}_{\mathrm{CC}}\right|=\left|\mathrm{V}_{\mathrm{EE}}\right|$
$=K 3 \mathrm{~V}_{\mathrm{C}}$

Fig. 1. Schematic of the voltage controlled oscillator shows where the various outputs are available.

PARTS LIST

$\mathrm{C} 1-0.01-\mu \mathrm{F}, 5 \%$ polystyrene or silver mica capacitor
C2.C3,C7-2.2- F , 25 -volt electrolytic or tantalum capacitor
C4-0.1- $\mu \mathrm{F}$ Mylar or dise ceramic capacitor C5- $0.05-\mu \mathrm{F}$ Mylar or disc ceramic capacitor $\mathrm{C} 6-0.001-\mu \mathrm{F}$ disc ceramic capacitor D1,D2-IN914 silicon diode
ICl-741CA or 747CA operational amplifier IC (see text).
IC2-8038 voltage-controlled oscillator IC
J1-J8-Phono or other suitable jack
Q1.Q2-2N5129 npn silicon transistor
The following fixed resistors are $1 / 4$-watt, 10% tolerance unless otherwise specified.
R1,R2,R3-39,000 ohms
R5,R13,R21,R24-47,000 ohms
R6-15,000 ohms
R7-56,000 ohms
R9,R10-33,000 ohms, 5\% max.
R12-1000 ohms
R14-150,000 ohms
R18-220,000 ohms
R19- 10,000 ohms
R20,R25-100,000 ohms

R23-100 ohms
R4,R8,R17-10,000-ohm printed circuit trimmer potentioneter
R11-1-megohm linear taper potentiometer R15- 50,000 -ohm linear taper potentiometer R16,R22-10,000-ohm linear taper potentionneter
R26-100,000-ohm linear taper potentiometer SI-1-pole, 3-position rotary switch
Mise-Printed circuil or perforated board, suitable enclosure, hookup wire, IC and transistor sockets, knobs, machine hardware, solder, etc.

The constant K3 was chosen to be 208 to conform with the author's controller. Thus, the product R9C1 = 0.00361 R5/(R1 $\left.V_{C C}\right)$. Intersil recommends a value of R9 (and R10, as the two are identical) between 10,000 and 100,000 ohms for best linearity. Because the capacitance of C1 is on the order of $0.01 \mu \mathrm{~F}$, a small deviation from the nominal value will affect K 3 considerably. Therefore, a capacitor with as close a tolerance as possible (no more than 5\%) should be used.

Given these factors, the following design steps are suggested:

1. Select a single value for R1, R2, and R3 between 33,000 and 47,000 ohms;
2. Determine the value of R5 using the equation

$$
R 5=R 1\left(\left(V_{\mathrm{B}} / 6\right)-\left(\mathrm{V}_{\mathrm{CC}} / 18\right)\right) ;
$$

3. Find the resistance of $R 7$ as given by the formula $R 7=R 5\left(V_{E E} / V_{B}\right)$;
4. Calculate the value of $R 6$

5. Then, the product R9C1 is determined by the equation $R 9 C 1=0.00361 R 5 /\left(R 1 V_{C C}\right)$ where $R 9$ will be between 10,000 and 100,000 ohms.

Fig. 2. Input multiplier circuit adjusts the control voltage.

Construction. The V-4 VCO can be assembled using printed circuit or perforated board. Suitable etching and drilling and parts placement guides are shown in Fig. 3. The use of sockets for the semiconductors is recommended. Using standard components, a K3 of 217.17 was obtained. This was deemed sufficiently close to the ideal value of 208. However, trimmer potentiometers can be used in place of $R 9$ and $R 10$ to allow precise adjustment of K3. If a second $V-4$ with an input multiplier is to be used with the first, trimmer potentiometers must be used so that its K3 can be matched to that of the first $V-4$. For best symmetry, the resistance of $R 9$ and $R 10$ should be as closely matched as possible.

Figure 4 shows modifications to the etching and drilling and parts placement

guides that must be made if an input multiplier is included. A 747 dual op amp replaces the 741 at the IC1 location.

A suggested panel layout for the V-4 (less input multiplier) is shown in Fig. 5. If solid wire is used for interconnection between the switches and controls on the panel and the pads on the pc board, no mounting brackets are necessary. You can use phono jacks, miniature phone jacks, banana jacks, or any other suitable type of connector for input and output signals.

Calibration. Connect the $V-4$ to a well-regulated bipolar (\pm) 15 -volt supply. Regulation is very important because the output frequency is proportional to the quantity $2 /\left(V_{C C}-V_{E E}\right)$. Then make sure your controller is providing correct control voltages. If 5 volts produces the fifth octave, 2.5 volts should produce the fourth, 1.25 volts the

Fig. 4. Adjustments that must be made to the basic board if an input multiplier is used.

third, 0.625 volt the second, and 0.3125 volt the first. Before calibrating the $V-4$, check the values of $V_{C C}$ and V_{B}. Determine $K 4$ from the equation $K 4=\left(V_{B} / 6\right)$ $-\left(V_{C C} / 18\right)$. Set trimmer potentiometers R4 and R8 approximately to their midpositions. Connect the positive probe of a high-impedance voltmeter to point B and the negative probe to point A.

Apply a control voltage to one of the inputs and adjust $R 4$ for a meter reading of ($\mathrm{K} 4 \mathrm{~V}_{\mathrm{C}}$) volts. Next, remove the control voltage and adjust R8 for a zero-volt reading. Then, reapply the control voltage and again adjust $R 4$ for a reading of ($\mathrm{K} 4 \mathrm{~V}_{\mathrm{C}}$) volts. Remove the control voltage and adjust $R 8$ for a zero-volt reading. Repeat this procedure until no further adjustment is necessary. Then apply a control voltage and adjust R17 for minimum pulse width with R16 set fully counterclockwise. This completes the calibration procedure.

Using the VCO. The V-4 can be used just like any other VCO. Keep the following guidelines in mind:

- When using the triangle output, turn R16 (PULSE WIDTH ADJUST) fully clockwise. The HIGH and MEDIUM positions of S1 will result in a triangle output with less low-frequency content than the Low position. Accordingly, the output waveforms will have steeper slopes and "brighter" tones.
- The grounds of the controller and the $V-4$ must be tied together.

Fig. 5. Suggested layout diagram for the front panel of the V-4 without the input multiplier.

- When using the pulse width output, connect the PWM input to a control oscillator and adjust the control oscillator output for zero volt if no modulation is desired. Alternatively, the PWM input can be grounded. If this input is left floating with respect to ground, R16 will have little or no effect on the width of the output pulses.

CB RULES CHANGES FOR 1977

THE Federal Communications Commission (FCC) dropped its big bombshell in July 1976, when it released new rules that expanded the Class D Citizens Band from 23 to 40 shared AM and SSB frequencies. The channelexpansion date was effective January 1, 1977, accompanied by a host of other revisions and new rulings.
Among the new rules are name changes, effective January 27. The Citizens Radio Service is now called the Personal Radio Services, with Class D now named the Citizens Band Radio Service. Also, Part 95 of the Rules now consists of four subparts. Only the applicable subparts need be in the possession of a licensee. Thus, CB'ers will no longer have to fight through deep technical standards, the Remote Control Service, etc.

The new band extends from 26.965 MHz to 27.405 MHz . All channels are spaced 10 kHz apart except those adjacent to one of the five Class C channels. (The sixth Class C channel is 27.255 MHz , which is the same as Class D's channel 23.) Had the FCC added more channels above 27.405 MHz , it is believed that serious intermodulation interference would have resulted.
The new channels are not numbered by the FCC. The original 23 channels were. However, the industry quickly numbered the channels 1 through 40 . Can you imagine a channel selector that indicates the frequency (such as 27.395) instead of a channel number?

Until the band was expanded, 27.235, $-27.245,27.265$, and 27.275 MHz were not available for $C B$ use. The frequency 27.225 MHz is CB channel 22 and 27.255 MHz is CB channel 23. To avoid MARCH 1977
confusion, channel 23 remains at 27.255 MHz , with channel 24 (27.235 MHz) and channel $25(27.245 \mathrm{MHz}$) interspersed between channels 22 and 23. Channels 25 through 40 extend from 27.265 MHz to 27.405 MHz in $10-\mathrm{kHz}$ steps. As far as the user is concerned, the frequencies actually used do not matter; only the consecutive channel numbers need be considered.
Channel $9(27.065 \mathrm{MHz})$ is still reserved as an emergency channel. Since channel 11 (27.05 MHz) has been restored as a general-use channel, there are now 39 AM and 78 SSB channels available for standard communication, plus channel 9 .

All CB transmitters must be typeaccepted by the FCC, of course. Now, however, new CB receivers must be certified by the FCC as well.

Most 23-channel CB sets have a hete-rodyne-type frequency synthesizer that employs an oscillator operable on six different frequencies in the $27-\mathrm{MHz}$ region. These signals, if radiated, can interfere with land-mobile radio systems operating in the $37-\mathrm{MHz}$ region of the $30-59 \mathrm{MHz}$ (low vhf) land-mobile band.

Because the second harmonic of a CB signal can cause TVI (television interference) to television channel 2 , and the third harmonic can interfere with the reception of TV channel 5 , the new rules require that the harmonic attenuation of newly type-accepted CB transceivers be at least 60 dB , as compared to the earlier 50 dB requirement. The strength of any harmonic of a 4 -watt transmitter may not exceed 4 microwatts ($\mu \mathrm{W}$). (In the future, the FCC might increase the harmonic attenuation requirement to 100 dB , limiting the power of any har-
monic of a $4-\mathrm{W}$ transmitter to 0.0004 mi crowatt.)
The FCC now requires that, at any frequency, a signal at the antenna terminals of a CB receiver not exceed a level of 2 nanowatts and will probably tighten this standard to 0.2 nanowatt in the future. Direct radiation from the chassis may not exceed $5 \mu \mathrm{~V}$ per meter, when measured at a distance of 3 meters. Also, interference arising from the power line (base station or mobile transceiver used with an ac adapter) may not exceed 100 microvolts.

In earlier days, type-acceptance of CB transceivers appears to have been granted largely on the basis of test measurements presented to the FCC. Now, however, the FCC examines a sample transceiver. Moreover, it is expected that the Commission will sample production models, too.
Samples of 40 -channel CB transceivers were not accepted for testing by the FCC until September 10, 1976, with a cutoff date of November 1 for those new rigs that would receive type-acceptance by January 1, 1977 (assuming they passed the tests). During early tests, it was found that many manufacturers had trouble limiting the receiver's signal radiation to the newly established $5-\mu \mathrm{V}$ standard. Consequently, the FCC has been stretching the figure to $8 \mu \mathrm{~V}$ for actual units examined by the Commission. Furthermore, production models can get away with $15 \mu \mathrm{~V}$ on a sampling basis.
Clearly, the FCC is enabling CB radio manufacturers to phase-in the new standards, which, frankly, makes sense. Otherwise, production would be seriously curtailed and customers would be faced by higher price tags.

The new rules prohibit the use of internal or outboard adapters to permit 23channel transceivers to be operated on the new channels (24 through 40). However, the FCC voted to authorize manufacturers to. convert 23-channel transceivers, in stock as of November 1, into 40 -channel units. Although new 40 channel equipment must meet the $5 \mu \mathrm{~V} /$ meter (stretched to $8 \mu \mathrm{~V}$) specification for receiver chassis radiation, converted sets may radiate up to $50 \mu \mathrm{~V} /$ meter, measured at a distance of 3 meters.

Converted CB rigs (only those 23 channel units with "digital" circuitry are likely, for economic reasons, to be "convertible" by manufacturers) must carry a special label stating that they have been converted under a special FCC waiver dated November 10, 1976.

There's nothing in the new rules that prohibits the manufacture of new 23channel units, but they promise to be supplanted by newer models with the 17 new channels added. Manufacturers of 23-channel units that do not meet the new standards must cease production by August 1, 1977, and sales must be discontinued by January 1, 1978. (Owners of these units may continue to use them, however.)

Other Changes. Other CB radio rules changes have occurred. For example, instead of having to wait weeks for a CB license before going on the air legally, you can now issue your own "temporary permit," make up your own temporary call sign, and start transmitting immediately after buying and installing a CB transceiver! When you unpack your CB transceiver, there should be a copy of FCC Form 505, a copy of FCC Form 555-B, and a copy of Part 95, FCC Rules and Regulations (the CB rules), in the carton.

You must complete FCC Form 505, the application for a CB station license and mail it to the Federal Communica-
tions Commission, P.O. Box 1010, Gettysburg, Pa. 17326. But don't send along the $\$ 4.00$ requested! Effective January 1, 1977, CB Licenses are free! (Rebates are expected to be sent out at a future time.) Most existing official call signs consist of three letters and four numerals (such as KDQ-1212). New ones now consist of four letters and four numerals.

Because of the high theft rate of CB mobiles, the revised FCC rules require that manufacturers engrave the unit's serial number on the chassis, making eradication difficult.

Looking Ahead. In mid-1976, the FCC formed PURAC (Personal Use Radio Advisory Committee) whose members include CB users, equipment suppliers, engineers, and others who serve the FCC in an advisory capacity. Anyone can join and attend meetings.

Standards had to be tightened so that TVI could be reduced and so that CB users would suffer less from adjacent channel interference ("bleedover" and "splatter"). With more than 7 million CB licensees operating an estimated 16 million transmitters, the problems could get worse as the CB transceiver "population" grows. Note that FCC holds the CB'er responsible for maintaining inter-ference-free communications.

Nearly all CB transceivers are rated as being capable of nearly 100 percent modulation. Few are capable of 100 percent positive (upward) modulation, but many can achieve greater than 100 percent negative (downward) modulation on peaks. It is the negative overmodulation that causes problems. Distortion is produced and the signal can splatter onto adjacent channels or over the entire band. For this reason, the FCC is taking a hard look at modulation limiter functioning. As a result, many CB radios are no longer playing loose and fast with their AML circuitry. Therefore, expect
somewhat lower modulation capability with some 40 -channel rigs.

Interference from low-power (no more than $100-\mathrm{mW}$ input) "waikie-talkies" used by children can be expected to abate as the FCC no longer permits such units to be manufactured for use on the CB 11-meter band. The frequency range of these two-way radio portables hás been moved to :49.82-49.90 $\mathrm{MHz}-\mathrm{a}$ far cry from CB's $27-\mathrm{MHz}$ band. The older walkie-talkies can be used until 1983, but most will be out of service by then.
The FCC is studying the possibility of expanding the Citizens Band in the $220-225 \mathrm{MHz}$ spectrum and the $890-947$ MHz band. New frequencies would also serve to accommodate the hordes of new CB users that will join the throng in future years.
What about the new 40-channel rigs? There will probably be a shortage during the first quarter of this year, but production will likely catch up to demand later in the year. The 40 -channel units offer 17 new, virtually unoccupied channels which will permit clearer and longerrange reception for awhile. Moreover, the widespread use of digital circuitry makes possible electronic numerical channel displays that are easier to read, can be built into a microphone, and add a certain "class" to the rig. There are many 23 -channel rigs that have this feature, too. Some of the added 17 CB channels will be subject to the possibility of interference from Industrial, Land Transportation, and Public Services licensees which will share four new channels $(24,25,26$, and 27) for another three years.

In brief, there's safety in numbers with CB radios today, with close to 20 -million CB radios in use throughout the country. Emergency calls, motorist assist, and just plain talk fun can be yours at modest cost-whether you are operating with 23 or 40 channels!

> PROS AND $\mathfrak{c} 0 \mathrm{NNS}$ OF CB FREQUENCY-GENERATION
> METHODS
> You'll be making a buying decision among crystal, frequency synthesizer, and phase-locked-loop digital when you pick a CB transceiver. Here's how each works and its attributes.

ALL RADIO transmitters (and most receivers) contain stages that generate r-f energy. These oscillator circuits vary in design and application. For ex-
ample, in CB transceivers, r.f signals at two or more frequencies are required to determine the transmit and receive channels.

Responding to this challenge, manufacturers employ one of three methods of frequency generation: crystal oscillators, crystal synthesizers, and phase-

(A)

Fig. 1. Tupical crystal oscillatars employing field-effect (A) and bipolar (B) transistors.
locked-loop synthesizers. With the advent of 40 -channel units, the latter method has been widely' adopted for fullchannel transceivers. Equipment with fewer channels (hand-held types, for example), however, still utilize individual crystal and crystal synthesizer systems. In this article we'll examine the strengths and weaknesses of all three approaches.

Some Basics. The receiver section of a typical transceiver is a superheterodyne. "Superhets" have been around for a long time, and the basic principle remains unchanged. Prior to detection, the received r-f signal is frequency shifted or converted to an intermediate frequency (i-f). This conversion is performed by the mixer stage, which heterodynes two r-f signals. That is, one signal is "beat" against another, resulting in four output signals-the two originals plus one at the sum of the two beat frequencies and one at the difference.

For example, if we heterodyne a 2 megahertz (MHz) signal with a $4-\mathrm{MHz}$ one, we will obtain a signal at $6 \mathrm{MHz}(6$
$\mathrm{MHz}=4 \mathrm{MHz}+2 \mathrm{MHz}$), and another one at $2 \mathrm{MHz}(2 \mathrm{MHz}=4 \mathrm{MHz}-2$. MHz). The frequencies involved in CB communications are around 27 MHz , and the i-f most commonly used is 0.455 MHz or 455 kHz .

This low i-f enables us to have receivers that exhibit high gain (to pick up weak signals) and good selectivity (to reject signals on frequencies other than that of the desired channel). To receive a Channel 13 signal at 27.115 MHz on a transceiver with a $0.455-\mathrm{MHz}$ i-f, the mixer stage will beat the Channel 13 signal with one at 27.570 or 26.660 MHz supplied by a local oscillator. In the first case, the difference frequency (27.570-27.115) will be 0.455 MHz , and in the second, it will be 27.115-26.660, or 0.455 MHz . Note that the subtraction is made so that a positive remainder is obtained. No matter which local oscillator frequency is used, the sum frequency will be around 54 MHz . This signal will not be passed by the tuned circuits in the i-f section.

However, this receiver will suffer from poor image rejection, because the i-f is low compared to the original frequency, which has been mixed or converted only once. (Such a receiver is called a singleconversion unit.) It will not be able to tell the difference between the desired CB signal and one 0.91 MHz (twice the $\mathrm{i}-\mathrm{f}$)
removed. For example, a $26.205-\mathrm{MHz}$ signal, if it reaches the mixer, will beat with the $26.660-\mathrm{MHz}$ signaliand produce a $0.455-\mathrm{MHz}$ output. Similarly, if a $27.570-\mathrm{MHz}$ local oscillator signal is used, a signal in the 10 -meter amateur band at 28.025 MHz could be picked up simultaneously $(28.025-27.570=$ 0.455).

The image signal generally can not be attenuated by more than 10 dB or so, because the r -f circuits of the receiver must pass a band of frequencies for total coverage of the CB band. These circuits are not selective enough at 27 MHz to adequately discriminate between signals 0.91 MHz apart. However, a significant improvement in image rejection can be realized by going to a higher i-f (typically $7-10 \mathrm{MHz}$). This will place the image signal much farther away from the frequencies of interest, to a point where the r-f circuits can attenuate any image that does reach them by as much as 50 to 80 dB .

Unfortunately, at higher i-f's it's not very easy to obtain high selectivity without using expensive filters, such as those used in single-sideband (SSB) equipment. Also, the gain of i-f stages at these frequencies is usually lower than those at 0.455 MHz . Therefore, double conversion is often used. This system employs two mixers, two local oscilla-

TABLE

Fig. 2. Block diagram of 14-crystal, 23-channel syrithesizen Various crystal combinations are given in Table I.
tors, and thus two i-f's. The first, high i-f yields good image rejection and the second, low i-f provides high gain and selectivity.
A simple transmitter, on the other hand, does not employ heterodyning. It consists simply of an oscillator whose output is at the transmitting frequency, one or more driver stages, a modulator, and a final amplifier. However, heterodyning is used in more complex transmitters. Both types of transmitters will be examined.

Crystals and Crystal Control. Oscillators employing quartz crystals are often employed in applications (such as CB radios) demanding a high degree of frequency stability. This stability is the crystal oscillator's greatest asset, usually many times greater than that obtained from an oscillator using coil/capacitor tuned circuits as the frequency-determining elements.
The crystal oscillator's stability is derived mainly from the properties of the crystal itself, which exhibits the piezoelectric effect. That is, when physically compressed, a voltage develops across the crystal. Conversely, when a voltage is impressed across the crystal, it physically deforms. Placing the crystal in a suitable circuit (see Fig. 1.) will cause it to vibrate at a frequency determined mainly by its physical dimensions (principally its thickness).

The major disadvantage of quartz crystal frequency control is that the crystal has to be ground for one specific frequency, whereupon it is mounted in a sealed case. So a receiver with $40-$ channel capability and one intermediate frequency would require 40 individual crystals, each one ground to produce a specific output signal frequency equal to the sum of (or difference between) a particular channel frequency and the i-f. (This requirement has spurred designers to develop sophisticated circuits to reduce the crystal count, as we shall later review.)

The channel selector on the transceiver's front panel connects the appropriate crystal to the local oscillator for generation of the required frequency. More recent designs employ 'diode switching. That is; one side of each crystal is connected to the oscillator circuit, and the other side is connected to a switching diode, which is in turn grounded. The selector switch forward biases the appropriate diode, effectively grounding the crystal to which it is connected. All other diodes are turned off, thus keeping their crystals inactive.

It is interesting to note that the crystals in the circuits of Fig. 1 are not ground to oscillate directly at 27 MHz . Crystals capable of oscillations at such high frequencies are generally very thin and fragile, ruling out their use in high-frequency applications such as CB. Rather, overtone crystals are used. Here, a quartz crystal, like a violin string, can be made to physically resonate (and therefore electrically resonate) at overtones of its fundamental frequency, which does not carry the same meaning as "harmonic." The overtone is a physical phenomenon whose frequency differs from the harmonic due to the mechanical loading of the crystal, whereas the harmonic is an electrical phenomenon that's an integral multiple of the fundamental frequency.

Most CB crystals are specifically ground for overtone operation, and the overtone or working frequency of the crystal is stamped on its metal case.

Until a few years ago, most transceivers with 23 -channel coverage used clusters of crystals. For a single-conversion receiver, 23 channels were needed. The transmitter section also required 23 crystals, but these were ground to produce outputs at the channel frequen-cies-not at frequencies offset from the
channels by the receiver i-f-bringing the total up to 46 crystals for 23-channel transceive coverage. If a dual-conversion receiver were used, another crystal -was added for the second i-f stage. Although the operating frequencies would be tightly controlled, crystal cost for this was too high.

Crystal Synthesizers. To produce CB transceivers at the lowest possible cost, manufacturers developed circuits to minimize the number of crystals needed for full CB coverage. The most common approach is called the crystal synthesizer. It uses the heterodyning principle to generate needed frequencies, and reduces the crystal tally down to 12 or 14 for 23-channel coverage.

In one synthesizer, one of six high-frequency crystals is mixed with one of four low-frequency crystals to produce a dif-ference-frequency output which is the required frequency of heterodyning on receive. Similarly, one of four other low-frequency crystals is used in conjunction with one of the six high-frequency crystals to produce the transmit frequency. The various combinations required for each channel are given in Table 1 . The block diagram of the system is shown in Fig 2.

Fig. 3. This 23-channel crystal synthesizer has dual conversion ön receive. Crystal combinations in Table II.

TABLE II

Channels1-4	Crystal Oscillator Frequencies in MHz	Channels
	$\mathrm{f}_{1} \quad \mathrm{f}_{2} \quad \mathrm{f}_{3}$	
	$\begin{array}{lll}37.6 & 10.18 & 10,635\end{array}$	1, 5, 9, 13, 17, 21
5-8	$\begin{array}{lll}37.65 & 10.17 & 10.625\end{array}$	2, 6, 10, 14, 18, 22
9-12	$\begin{array}{lll}37.7 & 10.16 & 10.615\end{array}$	3, 7, 11, 15, 19
13-16	$\begin{array}{lll}37.75 & 10.14 & 10.595\end{array}$	$4,8,12,16,20,23$
17-20	37.8	
21-23	37.85	
Receive: $f_{1}-f_{\text {elo }}=$ approximately 10.6 MHz		
$f_{1}-f_{\text {big }}-f_{2}=0.455 \mathrm{MHz}$ (second $i-f$)		
Transmit: $f_{1}-f_{3}=f_{\text {transmit }}$		
Example fo	Channel 13	
Receive: $37.75-27.115=10.635 \mathrm{MHz}$ (first i-f)		
Transmit: 37.75-10.635 = 27.115 MHz (transmitting frequency)		

TABLE III

AM/SSB Crystal Synthesizer

f_{1} - one of six crystal frequencies near 22 MHz
f_{2} - one of four crystal frequencies near 12.8 MHz
f_{3}-b.f.o. at 7.8 MHz
$\mathrm{f}_{4}-7.345 \mathrm{MHz}$
Receive:
$f_{1}+f_{2}-f_{\text {sig }}=7.8 \mathrm{MHz}$ (first $i-f$)
$f_{1}+f_{2}-f_{\text {sig }}-f_{4}=0.455 \mathrm{MHz}$ (second AM i-f)
$f_{1}+f_{2}-f_{s i g}-f_{3}=$ voice frequencies
Transmit: $f_{1}+f_{2}-f_{3}=f_{\text {trasamin }}$
Example:

$$
\begin{aligned}
& \mathrm{SSB}-22+12.8-27=7.8 \mathrm{MHz} \text { (first } i-f \text {) } \\
& 7.8-7.8=\text { voice frequencies } \\
& \mathrm{AM}-22+12.8-27=7.8 \mathrm{MHz} \text { (first } i-f \text {) } \\
& 22+12.8-27-7.345=0.455 \mathrm{MHz} \text { (second } i-f \text {) }
\end{aligned}
$$

Transmit: $22+12.8-7.8=27 \mathrm{MHz}$ (transmitting frequency)

Fig. 4. Crystal synthesizer for a 23-channel AM/SSB transceiver. Crystal combinations are given in Table III.

Another standard 23-channel configuration using 14 crystals is shown in Fig. 3 , but this one provides dual-conversion on receive. In this case, the first $i-f$ is at approximately 10.6 MHz , produced by heterodyning one out of six high-frequency crystals with the received CB signal, and extracting the difference frequency. This i-f is, in turn, mixed with one of four lower-frequency crystals to produce the second $0.455-\mathrm{MHz}$ i-f. Transmit frequencies are generated by single-conversion using one of the six high crystals and one of the four low crystals. The necessary combinations are listed in Table li.

The total number of crystals can be reduced to 12, but, unfortunately, reduction in crystal count is offset by the need for an extra oscillator and another mixer. - Other crystal frequencies can be used in these synthesizer sytems as long as the sum or difference signals provide the required i-f or i-f's as well as the corresponding transmit channel frequency.

Single Sideband. So far, we've considered crystal control and synthesis for AM rigs. Now, let's examine what happens in SSB gear.

Single sideband is a more efficient
method to transmit information. Instead of sending two mirror image sidebands and a carrier, as is done in AM systems, SSB signals contain only one sideband and no carrier. Eliminating one sideband has no effect on the information contained in the total signal because both contain exactly the same components. The carrier, on the other hand, contains no information in itself, but it must be present in one way or another at the receiver for the extraction of the information in the sidebands.

If the carrier is not transmitted, the receiver must re-insert an equivalent carri-
er before the signal is detected. This job is handled by the beat frequency oscillator, whose output is mixed with the signal (usually after one or more stages of conversion) in the product detector. The output of the product detector, if the b.f.o. is exactly on the proper frequency (set by the clarifier), is a fair rendition of the other operator's voice.

SSB transceivers require sharp filters because the transceiver must ignore the other sideband, which is very close to the desired one. But since we need a narkow filter anyway, it's usually not worth going to dual conversion. The image frequencies are well removed from the operating passband of the filter. When single conversion is used, the basic 12-crystal synthesizer can be used with some modifications. However, this works for SSB only.

Almost all rigs that have SSB provisions also include $A M$, and a common arrangement used in these dual-mode transceivers is shown in Fig. 4. On SSB, single conversion to a $7.8-\mathrm{MHz}$ i-f is used. Dual conversion is used for AM signals, and the first $i-f$ is mixed down to 0.455 MHz . (See Table III.)

The 23-channel crystal synthesizers discussed are being neglected now in favor of phase-locked-loop (PLL) or digital circuitry that uses far fewer crystals. The principle is even more important in considering the new 40-channel rigs where, using crystal synthesizers, additional crystals and more complex switching would be needed.

Digital Synthesizers. Using the socalled digital or PLL synthesizer, a fullcoverage transceiver requires only two or three crystals and the synthesizer itself only needs one. (The other one or two are used in heterodyning stages.)

A basic synthesizer (Fig. 5) is composed of a reference oscillator, a phaselocked loop, a Schmitt trigger, a phase comparator, a low-pass filter, and an er-

Fig. 5. A basic digital frequency synthesizer, Many frequencies can be generated using one reference crystal.

Fig. 6. A digital (PLL) synthesizer for AM/SSB use.
ror amplifier. The reference oscillator is a crystal-controlled circuit that produces a stable, known frequency which will be used as a reference. This phase comparator samples the frequencies of two input signals and produces an output voltage that is directly proportional to the frequency difference of the inputs. The low-pass filter smooths this error signal into a dc level. The voltage-controiled oscillator or VCO is an oscillator whose output frequency varies directly with the level of a control voltage applied to it. The Schmitt trigger converts sine waves into square waves, and the $\div \mathrm{N}$ circuit divides the frequency of an applied square wave by a whole number, N .
Now that we've defined some essential terms, let's consider (for simplicity's sake) the operation of a synthesizer that will generate one of three separate fre-quencies- 26,27 , and 28 MHz .
The reference oscillator produces a steady square wave (sketched at its output in Fig. 5), whose frequency is governed by a $1-\mathrm{MHz}$ crystal. At the same time, the VCO is oscillating at a frequency which we'll assume to be 26.52 MHz . We'll further assume that the FREQUENCr switch in the $\div \mathrm{N}$ circuit is set at 26 . The output of the VCO is "squared up" by the Schmitt trigger, as shown in Fig. 5 , and is divided down to $1 / 26$ th of its original frequency by the $\div \mathrm{N}$ circuit. Thus, two signals are applied to the phase comparator-one at exactly 1 MHz and the other at 1.02 MHz .
The output of the phase comparator will be an error voltage because the reference frequency is lower than that of the VCO (after it has been divided down). The lowpass filter will smooth out
this voltage, which is amplified by the error amplifier. The amplified error voltage is applied to the VCO, and will cause the frequency of the VCO output to decrease. As the VCO frequency approaches 26 MHz , the output of the $\div \mathrm{N}$ circuit approaches 1 MHz . In tum, the error signal gets smaller and smaller, and eventually disappears when the VCO is running at exactly 26 MHz . At that point, the frequency at the $\div \mathrm{N}$ output is exactly 1 MHz , and is exactly in step with the output of the reference oscillator.

If we then turn the frequency switch to 27 , the VCO momentarily keeps running at 26 MHz . Its output is now divided by 27 , and the frequency applied to the phase comparator is about 0.98 MHz . The resulting error voltage is smoothed, amplified, and applied to the VCO, whose frequency moves upward. As it approaches 27 MHz , the error signal gets smaller and smaller, until the VCO is running at exactly 27 MHz . A similar

Fig. 7. Digital synthesizer for AM with dual conversion on receive.

VCO's 19.290-MHz output to produce the $7.825-\mathrm{MHz}$ i-f. Simultaneously, the VCO output is beated with the 18.810MHz crystal oscillator output, and a difference signal at 480 kHz is extracted. This is divided by a factor of 48 in the programmable divider to produce a VCO comparison signal at 10 kHz . If the VCO drifts slightly, an error voltage is produced to correct the frequency shift. On transmit, the VCO output at $19.290-\mathrm{MHz}$ is heterodyned with a $7.825-\mathrm{MHz}$ crystal oscillator output to produce a sum frequency of 27.115 MHz . This $7.825-\mathrm{MHz}$ crystal oscillator is also used as the bfo on receive.
A PLL synthesizer for a 23-channel AM transceiver with a dual-conversion receive section (to improve image response) is shown in Fig. 7. On receive, an incoming Channel 13 signal at 27.115 MHz is heterodyned with the $16.420-\mathrm{MHz}$ VCO output to generate a $10.695-\mathrm{MHz}$ first $\mathrm{i}-\mathrm{f}$. (The full range of the VCO is 16.270 to 16.560 MHz .) The first $i-f$ is then heterodyned with the output of the reference oscillator. In the receive mode, this reference signal has a
frequency of 10.240 MHz . Extracting the difference signal results in a $455-\mathrm{kHz}$, second $\mathrm{i}-\mathrm{f}$. The reference oscillator output is divided by a factor of 1024 and applied to the phase comparator at a frequency of 10 kHz on receive. At the same time, the VCO output is divided by a factor of 1642, and the resulting 10kHz signal is applied to the phase comparator. For 23 -channel receive coverage, the dividing factor is varied from 1627 to 1656.

On transmit, the VCO and reference oscillator outputs are heterodyned by the transmitter mixer, and the sum frequency is extracted. For this sum signal to be at the center frequency of Channel 13 , the VCO output frequency must be increased 455 kHz , the i-f frequency. However, there is no integer that, when divided into the new VCO frequency, will result in a quotient of exactly 10 kHz .

The foregoing problem is solved by shifting the reference oscillator output downward by 1.888 kHz to 10.238112 MHz . Dividing this new reference by 1024 results in an output at 9.998156 kHz . Then, by increasing the new VCO
frequency slightly (from 1.861 to 1.914 kHz , depending on the setting of the channel selector), and by programming the divider for a factor in the 1646-1702 range, the VCO comparison signal will also be 9.998156 kHz . The feedback arrangement of the PLL will keep the VCO and the sum of the VCO and the reference close to their ideal values.

The basic 23-channel PLL system is the obvious system used in the new 40channel rigs. The only real modifications required are expansion of the programmable divider and the use of a VCO with wider range. Fortunately, these are readily accomplished, and some manufacturers are even offering to modify their existing 23-channel "digital" rigs for full 40-channel coverage.
The most exciting development in PLL synthesis is the development of LSI systems. That is, the production of complete PLL synthesizer circuitry in one or two large scale integrated circuits, requiring few additional external components. This methodology is clearly the wave of the future for generating frequencies for CB.

WILL SUNSPOTS AFFECT CB COMMUNICATIONS?

Sunspots, the ionosphere, and CB propagation prospects.

BY STANLEY LEINWOLL

Last summer, many CB newcomers were startled when, without warning, they heard signals coming in from great distances, in some cases, from as far as 1000 miles. Then, late in August, the phenomenon stopped as abruptly as it had begun
The phenomenon observed was, of course, skip. It occurs when conditions are such that signals are propagated over distances far greater than their normal range. To those CB'ers who use the band for short-range two-way communications in accordance with FCC rules (150-mile maximum), skip can be a nuisance if it increases channel crowding. For some, skip is exciting and fascinating (but illegal). Although the rash of summer skip was short-lived, a new factor is coming into play that will likely increase its frequency-sunspots. Some people knowledgeable in the field of radio propagation are predicting that, in a few years, coast-to-coast skip will occur regularly. This, they assert, will cause a

The sun exhibits high surspot activity on June 24, 1957 (U.S. Navy photo).
"traffic jam" on the Citizens Band. Others, however, including Eugene Parker, Chairman of the University of Chicago's Department of Astronomy and Astrophysics, and originator of the concept of the "solar wind," feel that no serious disruption of the Citizens Radio Service will take place.

To fully understand the propagation events that took place last summer, why the same conditions will recur this summer, and what the outlook for the 11 meter band might be for coming years, let's discuss the fundamentals of radio propagation at CB frequencies.

How a Radio Signal Travels.

When a radio wave leaves a transmitting antenna, it travels outward in all directions and moves simultaneously along the ground and through space. The component that travels along the ground remains in contact with the earth until it dies out. The effect of the earth on this ground wave signal is much like that of friction on a rolling ball. The loss of energy to friction slows the ball down and finally brings it to a complete halt.

Although radio waves do not slow down (they travel at the speed of light in a given medium), their amplitudes or field strengths rapidly diminish as they move along the ground. How great the attenuation is for a specified distance depends on the type of ground over which the signal passes. In general, flat or smooth earth extracts less energy than rough or hilly terrain, and moist or rich soil attenuates less than dry, sandy, or rocky earth. In general, 11-meter ground wave signals do not travel more than five or ten miles before they are "exhausted."

The Space Wave. There is another path that signals take upon leaving the antenna. It is a straight line through the lower atmosphere. This direct or space wave propagates directly from the transmitting antenna to the receiving antenna if the two are within sight of each other. This mode of transmission is also called line of sight. Obviously, the higher above ground the antennas are, the greater the distance covered. For example, the television antennas atop the Empire State Building in New York City are mounted at heights exceeding 1,000 feet and provide line-of-sight coverage for more than 50 miles in all directions from the city. In contrast, the line-of-sight distance for antenna heights of ten feet is about three miles. If both antennas are raised to 50 feet above the ground, coverage is extended to 18 miles.

In addition to height above ground, atmospheric effects sometimes influence line-of-sight range, but these are not as significant as antenna elevation. The space wave always travels relatively short distances-rarely more than 25 to 30 miles. Its most desirable characteristic is that its range does not change radically from night to day, from one season to the next, or from year to year.

The Sky Wave and the lonosphere. Figure 1 reveals a third component of the radiated signal, one which travels upward toward outer space. The signal is shown striking a region in the upper atmosphere and being returned to earth some distance from the transmitter. If it were not for this atmospheric region, called the ionosphere, most longdistance, high-frequency communication would be impossible, and there would be no such thing as Citizens Band DX.

The ionosphere is an electrified region which begins at an altitude of about 60 miles (97 km) and extends several hundred miles up. It has the ability to reflect radio signals in the frequency range be-

EARTH
Fig. 1. Sky waves can be reflected by the E (short skip) or F (long skip) regions of ionosphere.
tween about 2 and 30 MHz and return them to earth. The radio signal that travels to the ionosphere and returns to earth is called the sky wave. From here on, our discussion will deal solely with sky-wave signals and how they depend on the ionosphere for propagation over long distances.

The ionosphere is formed primarily by ultraviolet and X-radiation from the sun, which interacts with the gases in the upper atmosphere. In the process, some of the gas atoms lose one or more electrons. A gas atom that has lost an elec-
tron is called an ion. Actually, the free electrons in the ionosphere are responsible for the propagation of radio waves over long distances. A radio wave entering the ionosphere causes the free electrons to vibrate. Each oscillating electron acts like a tiny antenna, and reradiates energy.

Ionization, and hence, free electrons, concentrate at different altitudes because ultraviolet radiation occurs over a relatively wide range of frequencies, and these penetrate to different levels. Because the gases in the upper atmosphere respond to various wavelengths in the ultraviolet range, there is a tendency for free electrons to concentrate into stratified layers, or regions. The most important layers of the ionosphere in terms of propagation of radio waves are the E and the F layers.

The E layer exists primarily during the day at an altitude of about 60 miles (96.6 km). During the daylight hours of the summer months, the E layer can reflect 11-meter signals up to distances of about 1000 miles (1610 km). This effect, which is sporadic in nature, is one of the most important means of propagating signals on the Citizens Band.

Sporadic-E Propagation. Sometimes, at the lower limits of the E layer dense clouds or patches of electrons are created. They are able to reflect frequencies much higher than normal. These clouds are random in nature and relatively short lived, lasting no more than several hours. Accordingly, they are called sporadic- E or E_{s} clouds. Because of the high electron density in E_{s} patches, they are often capable of propagating' 11 meter signals.

Since the height of E_{s} is about 60 miles (96.6 km), the distance to which an E_{s} propagated signal can travel is limited to approximately 1000 miles (1610 km). For this reason, E_{s} openings are usually referred to as short-śkip propagation, as opposed to long skip, in which propagation takes place via the higher F layers.
E_{s} activity varies with the time of the day and season of the year. It is most common from late spring to mid-August. There is a secondary peak during the winter months, but it is not as intense as summer activity. E_{s} occurs most frequently during the daylight hours, peaking in the early afternoon. This past summer E_{s} was also common during the evening hours.
E_{S} activity also varies with latitude. The further south we go, the more intense and frequent sporadic-E openings

Fig. 2. Predicted and observed sunspot counts for the mean of cycles 8-19 and for the one now ending (20).
become. Consequently, circuits across the southern United States observe this effect more frequently than those in more northerly latitudes.
The mechanism that produces E_{s} is not clearly understood. However, a relatively recent theory of an Australian scientist, Dr. J. D. Whitehead, appears to have gained wide acceptance. Dr. Whitehead explains E_{s} as due to wind shears-a transient upper atmosphere condition in which the wind velocity at E layer altitudes is zero, while wind velocities immediately above and below approach 200 miles per hour and are in opposite directions. When this happens, free electrons are pulled from above and below into the zero-velocity region, resulting in E_{s} clouds. Dr. Whitehead's theory, which also involves the action of the Earth's magnetic field, explains the seasonal nature of E_{s}, as well as its variation with latitude.

Long-Term Outlook-The F Layer. The action of E_{s} explains the occurrence of $C B D X$ during the summer months. What happens during the rest of the year is dependent on events that take place in another part of the ionosphere, collectively referred to as the F layer.

The F layer is more important than the E layer because it is always present, day and night, season after season. It makes long-distance, shortwave communication possible. Because the 11-meter band is at the upper end of the short wave or high-frequency part of the spectrum, it has a strong influence over CB

DX propagation. To understand the role of the F layer in CB propagation, let's briefly discuss how it changes on a daily and a seasonal basis.

The intensity of ultra-violet radiation reaching the F region of the ionosphere is subject to considerable variation. It changes from day to night, from season to season, and between one point on the surface of the earth to another. In addition, there are year-to-year changes which occur over an eleven-year cycle. These latter changes depend on sunspots, which emit ultraviolet radiation. Some years, there are many more sunspots than in others. Consequently, radiation from the sun is greater during those years. The ionosphere can then reflect higher frequencies than when radiation is at relatively low levels. Let's go into these variations in greater detail:
-Diurnal Variations. During the day radiation from the sun is most intense. As a result, ionization is at a maximum, and the frequencies that the F region can reflect are higher during the day than at night. At night, in the absence of direct radiation from the sun, ions and free electrons begin to recombine, and the region becomes less electrified and less dense. Consequently, it loses its ability to reflect frequencies at the high end of the shortwave spectrum. As a result, CB DX is almost never possible via the F region during nighttime hours.
eseasonal Variations. It is obvious that the more hours of daylight there are in a day, the longer high frequencies will be propagated by the ionosphere. During the daylight hours, therefore, higher
'frequencies are reflected by the ionosphere in wintertime than those reflected in the summer.
-Geographical Variations. As we move towards the equator, the sun is more directly overhead for longer periods. Because the effect of radiation on the ionosphere also depends on the angle of incidence of this radiation, it is evident that the closer to the equator we are, the higher the frequencies we can expect to use.

The Sunspot Cycle. If diurnal, seasonal, and geographical variations were the only factors affecting ionization levels, then the same conditions would prevail from one year to the next at the same geographical location, and the pattern of usable frequencies over a particular circuit would be a simple matter to predict. Unfortunately, that is not the case. .

One of the most important factors influencing the behavior of the ionosphere is sunspot activity. Sunspots are enormous craters of hot, whirling gases on the surface of the sun. Although the nature and origin of sunspots are not fully understood, it is known that they are one of the principal sources of ultraviolet radiation from the sun. Because ultraviolet radiation affects the ionosphere, the importance of sunspots is clear. Sunspots, which are imbedded in the sun, move across its face in an east to west direction as the sun rotates. It takes a spot approximately 13 days to move across the visible face of the sun. That's about half of the solar period of rotation.

In the middle of the 18th Century, accurate records of sunspots were initiated. It was observed that sunspot changes occurred in a regular manner. In Fig. 2, the solid line also shows the average of all cycles observed since the middle of the 19th Century. It can be seen that a sunspot cycle goes from minimum to maximum and back to minimum in approximately eleven years. But the cycle is not symmetrical. It takes 3 to 4 years to go from minimum to maximum, and about 7 years to go from maximum to minimum. It should be noted, however, that some cycles have been as short as nine years while others have been 13 years long.

Figures 3 and 4 illustrate the importance of sunspot activity on CB propagation. These figures show the predicted range of frequencies useful for communications between the East and West Coasts of the U.S. for the present and several years hence, when sunspot activity will have increased to the point

Fig. 3. Solid line is propagation curve showing highest usable frequencies during sunspot minimum and maximum in winter months.
where CB signals' will propagate more regularly via the ionosphere. For the
winter of 1979-80 (Figure 3) we can see that coast-to-coast reception will be a

Fig. 4. Same as Fig. 3 forspring and'fall. In both cases, dashed lines indicate currently useful frequencies.
possibility between the hours of 1500 and 0030 GMT or 10 a.m. to 7:30 p.m. EST. For the spring and autumn months (Figure 4), coast-to-cgast reception of CB signals will at least be possible from 1400 to 0130 GMT, or 9 a.m. to $8: 30$ p.m. EST. In contrast, the currently useful frequencies (shown by the dashed line) indicate that no CB DX reception will be generally achievable at any time of day.
-The upper limit of frequencies the ionosphere will reflect even during maximum sunspot activity also depends on the distance between the transmitter and the receiver. At periods of high sunspot activity, some DX might occur around midday for distances of about 1000 miles and beyond. The further the separation, the longer the opening.

Once the openings start occurring, how long will they last? Well, a look back at Figure 2 indicates that about half the cycle registers numbers of 90 or more. It is at that cutoff point that ionization is high enough to give more regular CB openings. We can therefore predict at this time that 1979 and a few later years should see more' CB DX openings than at present, although intensity is speculative since the sunspots are not on a true regular cycle. When the foregoing sunspot peak occurs, it may be a temporary nuisance to some CB'ers and a listening bonanza for others. The difference depends on. when the peak really occurs and the extent of the sunspot buildup. In any event, don't worry about it because it cannot be controlled and it will pass soon enough.

HOW Exurcinnar EPEAREEP CAN IMPROVE MOBILE CB PERFORMANCE

0F ALL the accessories currently available for use with mobile CB transceivers, the external speaker is perhaps the one most often overlooked. However, the addition of such a speaker can often dramatically increase the reception by improving voice intelligibility.
A speaker, whether it is inside the transceiver cabinet or outside, converts the received and detected r-f signals into an intelligible replica of the other operator's voice. It must do so without introducing an appreciable amount of distortion, and should respond only to those frequencies which convey useful information. Let's consider the practicalities of CB speaker performance by evaluating a number of infiuential factorsstarting with the human voice itself.
plitude or intensity, frequency, harmonic content and time functions. The corresponding aural characteristics are loudness, pitch, tonal quality, and time perception or speed of sound production.

Speech is by no means constant in intensity. Some sounds are accented and loud, others are soft. The wide dynamic range of speech places special demands on the hardware in a voice communications link. Soft sounds, such as consonents, are much more likely to be washed out by ambient noise than vowels. But voice articulation, and hence intelligibility, is greatly dependent on the clear reproduction of consonants.

Male voices generally occupy the bandwidth shown in Fig. 1. The range of generated frequencies is about 300 to 6000 Hz . Vowel sounds are found from about 300 to 1000 Hz , and average about 20 dB above consonants, which are found from 1000 to 6000 Hz . This makes consonants much more vulnerable to noise than vowels, and that's why radio operators are often forced to resort to phonetics such as Bravo, Delta, and Tango to diistinguish b, d, and t. Also, some communications gear includes special signal-processing circuitry to reduce the consonant-masking effects of high-frequency noise.

Another factor influencing intelligibility is the rate of speech. Many listeners tend to miss key words in radio broadcasts when the announcer is averaging a snappy 200 words per minute. However, the 100-word-per-minute delivery by Franklin D. Roosevelt allowed an entire nation to absorb and reflect upon his famous "fireside chats." Among the time elements at work here are the lengths of individual sounds, the ratio of speech elements to pauses, and the rate at which complete words are spoken.

The Human Ear, For true communication, there must be a speaker and a listener, whether they are standing face to face or separated geographically but linked by a telecommunications network. In the latter case, the link hardware must be designed to work not only with the human voice, but also with the human ear.

The ear will accept a wider range of both sound amplitudes and frequencies than the voice is capable of producing. From the threshold of hearing- 0 dB , or 0.0002 dynes $/ \mathrm{cm}^{2}$-it can tolerate inputs up to three trillion times greater. The average range of frequencies the ear can detect is from 20 to $15,000 \mathrm{~Hz}$. However, its response depends oh amplitude, as demonstrated by the famous

Fig. 1. Bandwidth of the average male voice.

Fletcher-Munson curves. Hearing is keenest over the $1000-10-5000-\mathrm{Hz}$ segment. That's where the consonants are.

There are, however, some practical difficulties which result from the ear's response. Under certain circumstances, the ear will fail to distinguish one sound from another. This is called the masking effect, and is expressed as the increase (in dB) in the threshold of audibility of one sound when "masking" noise is introduced. It is shown graphically in Fig. 2, which indicates that it is harder to hear bass and treble sounds in a noisy environment than those in the midrange. Also, the graph shows that consonant
sounds are more readily masked than vowels.

Environment. In addition to the masking effect, a host of other environmental factors influence intelligibility. Absorption of high-frequency sounds can further diminish consonant strength. Such absorption often occurs in a mobile environment when the sound does not travel directly from transducer to listener, but rather is reflected by soft surfaces. Car- . peting and upholstery are the prime offenders. However, if a reflecting boundary is hard, annoying reverberations can result. In the absence of reflections and

Fig. 2. When noise is present, desired sound must be increásed in volume to preserve intelligibility.

Photo shows external speaker in typical under-dash position.

Fig. 3. On-axis response of transceiver's internal speaker (dashed) vs. Acoustic Fiber Sound Systems' "Kriket" KCS-35 externat communications speaker (solid) in anechoic chamber.

Fig. 4. Frequency response of internal (dashed) and external speaker (solid), both as mounted in typical mobile installation.
reverberation, sound levels diminish in direct proportion to the distance between the sound source and the listener. Of course, there may be sound sources present whose outputs are either above or below the bandwidth of the voice. If their levels are appreciable, intelligibility is adversely affected.

Hardware Considerations. Thus far we have considered the roles played by the' human ear, voice, and the intervening environment. Now let's see how the communications gear itself affects the situation.

Properly designed voice communications systems should have an audio frequency response-both at the transmitter and receiver-which is best for those frequencies carrying the desired information. Conversely, they should ignore all sounds outside the useful bandwidth. In the course of modulation, transmission, reception, and demodulation, a minimum of electrical noise should be introduced.

To best illustrate the effects discussed, let's consider a communications system with which we are all familiarthe mobile CB installation. The mobile environment of a car, van or truck generates ambient noise in the $200-\mathrm{to}-500-\mathrm{Hz}$ range. High frequencies are attenuated by padding, carpeting, etc. Wideband (wind) noise can be considerable at highway s.peeds. Electrical noise can be suppressed if care is taken in grounding all parts of the vehicle body and chassis, and by shielding the ignition system if necessary. Given the sophisticated circuitry of today's CB transceivers, unwanted noise generated by the rigs themselves can be neglected.

The major weak point in most rigs is the internal speaker. For one, its frequency response is usually far from ideal. For example, the dashed curve in Fig. 3 shows the frequency response of a typical transceiver with an internal speaker, as measured in an anechoic chamber using a microphone placed one meter in front of the speaker.
This transceiver was then mounted under the dash of a standard size American automobile and its frequency response measured with the microphone positioned to coincide with the average listener's ear. The resulting response is shown as the dashed curve in Fig. 4.
Obviously, the automotive environment had a marked influence on the overall response. Because the transceiver's speaker is mounted on the underside of the enclosure, it was pointing directly towards the floor. Also, the mi-
crophone was about 120 degrees off the front axis of the speaker, and most of the sound reaching it was reflected by the carpeting and upholstery. Predictably, poor high-frequency performance was observed.

A dramatically different result was obtained with an external speaker designed for voice communications. First, a frequency response test was performed in an anechoic chamber. The solid curve in Fig. 3 is the result of this test. Then the speaker was mounted in the automobile so that its front axis of radiation was facing the listener (microphone). Again, its frequency response
was measured, and appears as the solid curve in Fig. 4. The frequency response of the external speaker was broader and more uniform over those frequencies essential to voice intelligibility.

This can be explained by considering three factors. First, the external speaker has an inherently better frequency response, as indicated by the anechoic chamber tests. Second, the micro-phone-positioned at the location of the typical listener's ear-was on axis with the front of the external speaker. Therefore, it received the maximum portion of the high-frequency energies radiated by the speaker. Finally, because most of
the sound incident upon the microphone was directly radiated by the speaker, there was minimal alteration of the audio output signal by environmental characteristics of the car's interior.

In other words, the external speaker performed comparably in both the artificial and natural environments, but the transceiver's internal speaker showed a marked degradation in performance in the car as compared to its anechoic performance. Of course, the optimum position for an external speaker would be atop the dashboard of an automobile. But this is not always advisable since it could obstruct the driver's vision.

BUILD A

SILENCER

Squelches operating radio or tape player when CB signal begins.

BY RONALD MILES

Photo of prototype shows main circuit board mounted in chassis with relay in back corner, controls on front.

MANY CB'ers are torn between listening to an auto AM/FM radio or tape player and monitoring CB calls. With both active, the sound is cacophonous when the CB receiver unsquelches. The user can manually turn down the volume of the broadcast radio or tape player every time the CB becomes active, of course, undermining driving safety.

A CB'er can have his cake and eat it too, however, by using the "Silencer" described in this article. It will automatically quiet the radio or tape player when the CB receiver is unsquelched or the CB transmitter is used. The entertainment system will remain silent until either the CB receiver returns to the squelched state or the CB transmitter is no longer in use. At this point, the entertainment system returns to its normal volume. No major chariges to either the CB transceiver, AM/FM radio, or tape player are required.

Although designed for mobile applications, the Silencer can also be used with any receiver that has a squelch. For example, one can have a scanning monitor operating in the same room as a stereo music system; and each time the scanner stops at a station (becomes unsquelched), the audio system will be silenced until the vhf conversation is ended and the scanner resumes its normal scanning mode.

The only conditions required are that both radios should have speaker impedances of about 8 ohms; the audio power output should not exceed about 5 watts; the r-f power from the CB rig must not exceed FCC specs; and the vehicle (where used) must have a negativeground electrical system.

How It Works. The complete schematic is shown in Fig. 1. Audio voltage

Figit 1. Schematic of the:Silencer.
Circuit of the $r_{-}-f$ module is at upper right.

PARTS LIST-R-F MODULE

C17-22-pF, $100-\mathrm{V}$ mica capacitor C18- $0.005-\mu \mathrm{F}, 100-\mathrm{V}$ ceramic capacitor D7-high-speed silicorii diode 100 mA at 100 V (ECG 177)
J2-SO-239 coaxial cable connector
Pl -phono connector to mate with Jí and suitable length of shielded audio cable
P2-PL-239 coaxial connector with suitable length of RG-58/U coaxial cable R13-10,000-ohm, 1/2watt resisfor
Misc.-Suitable chassis for Silencer Lafayette 12 R 03017 V or similar), r-f module (Calectro H4-736 or similar), knob, Lbrackets (2), press-on type, relay mounting bracket, terminal strip (three-lug), mounting hardware; spacers, grommets, etc.

PARTS LIST-BASIC SILENCER

$\mathrm{Cl}, \mathrm{C} 2, \mathrm{C} 4, \mathrm{C} 5, \mathrm{C}, \mathrm{C8}, \mathrm{Cl} 2-0.005-\mu \mathrm{F} ; 100-\mathrm{V}$ ceramic capacitor
C3-5- $\mu \mathrm{F}$. 25-V electrolytic capacitor (axial lead)
C7-100- F F, 25-V eiectrolyic capacitor (axial 1ead)
C9.C13-10- $\mu \mathrm{F}, 25-\mathrm{V}$ electrolytic capacilor (axial lead)
C10- $0.22-\mu \mathrm{F}, 100-\mathrm{V}$ capacitor
$\mathrm{CH}-2-\mu \mathrm{F}$, $35-\mathrm{V}$ electrolytic capacitor (axial lead)
$\mathrm{C} 14-0.1-\mu \mathrm{F}, 50-\mathrm{V}$ ceramic capacitor
C15,C16-0.01- $\mu \mathrm{F}_{6} 100-\mathrm{V}$ ceramic capacior
DI through DS-high-speed silicon diade, 100 mA at 100 V
D6-silieon rectifier diode 100 V at 1 A
Fl_1-A' fuse with in-line holder (Radio Shack 270,281 or similar)
IL-12-V, $50-\mathrm{mA}$ panel lamṕ (Radio Shack 272-322 or similar)
IC) -741 op amp
IC2-555 timer

J1-chassis mounted phiono connector
K1-12-volt, $100-\mathrm{mA}$ coil, t-A contact rating. Monaural: dpdt (Radio Shack 275-206 or similar); stereo:3pdt (Allied 88601053 or similar)
Q1-2N3641 npn silicun transistor
R1,R2- 25 -ohm, 5 -wati resistor
R1A-same as R1, used in stereo version only R3,R5- 56,000 -ohm, $1 / 2$-watt resistor R4- 1000 -ohm miniature potentiometer,
R6-2700-ohm, $1 / 2$-watl resistor
R7- 10,000 -ohmi $1 / 2$-watt reșistor
R8-15,000-ohm, $1 / 2$-watt resistor
R9- 39,000 -ohm, $1 / 2$-watt resistor
R10-10-ohm, $1 / 2$-watt resistor
R11-270,000-ohm, $1 / 2$-watt resistor
$\mathrm{R} 12-10,000-\mathrm{hm}, 1 / 2$-watt resistor
\$1-mintature rotary switch, 4-position, 3pole (Calectro E2-166 or similar)
Ti-10k:2k miniature driver tiansformer (Radia Shack 273-1378, Calectro D1-722, or similar)
from the $C B$ remote speaker output is connected to pads A and A^{\prime} so that R2 becomes the load for the output transformer. The audio voltage generated across R2 is applied to the primary of transformer $T 1$, whose tums ratio provides a voltage step-up of five times, besides providing dc isolation.
The audio voltage on the secondary of T1 is applied to IC1 used as a comparator. The voltage divider combination of

R5, potentiometer R4, and resistor R3 produces a dc voltage (variable with the setting of R4) between the inverting and noninverting inputs of IC1 and this voltage is adjusted so that low-level ac signals will not cause the comparator to change states.
When audio of sufficient amplitude is generated across the secondary of $T 1$, parts of its cycle will cancel out the dc voltage developed across the potenti-
ometer and the comparator will switch state with each cycle, thus acting as a very-high-gain ac amplifier whenever high-level audio comes in. Thus, IC1 will produce an output only when the CB receiver is unsquelched.
The pulsed output from IC1 is coupled through capacitor C10 to a rectifier consisting of D4, D5, C11, and voltage divider $R 7$ and $R 8$. When the positive voltage across $R 8$ exceeds one diode drop,
transistor Q1 is turned on and essentially forms a short circuit. across the IC2 timing çapacitor C13.

Integrated circuit IC2 is set up as a timer whose RC circuit consists of C13, $R 9$, and, when function switch $S 1$ is in the slow delay position, R11. In the normal mode, IC2 pin 3 is low, and no power is supplied to the CB ACTIVE lamp 11. When transistor Q1 saturates, IC2 starts its timing cycle, and if $S 1$ is in either the fast delay or slow delay positions, relay K1 is energized to switch the CB audio output to the speaker, and at the same time, disconnect the broadcast radio or tape player speaker. When the CB audio ceases, IC1 no longer delivers voltage to the rectifier, and transistor Q1 cuts off. Then IC2 starts its timing cycle to cause K1 to change states. The delay keeps the relay from "chattering" during any pause between words, and also keeps the broadcast radio from becoming active for a short period of time after a transmission is received, and the transmitter is activated in reply. Function switch S1 provides a selection of fast or slow delays.

We have described how the broadcast radio or tape player is de-activated and the CB speaker comes alive when the CB receiver is unsquelched. Now we will discuss the r-f module that detects the operation of the CB transmitter and does the same switching.

As shown in Fig. 1, the separate r-f module is connected in series with the CB antenna and is "transparent" during CB reception. When the transmitter is activated, some of the $r-f$ is rectified by D7 and filtered by R13 and C18, and the resulting dc voltage is passed via a length of shielded audio cable to the base of transistor Q1, in parallel with the audio signal path from IC1. The presence of the rectified r-f voltage starts the timer up in the same way as for the au-

Fig. 2. Etching and drilling guide (top) and component layout for Sitencer does not include r-f module components.

Components for the r-f module are assembled in their own metal enclosure and suitably connected to the rest of the circuit:
dio signal. If you do not use a CB transceiver, the r-f module may be omitted.

Construction. The Silencer consists of two assemblies-the basic electronics and the optional r-f module.

The basic electronics circuit has two variations. If the radio to be silenced is monaural, then resistor R1A can be eliminated and for relay K1 use a dou-ble-pole, double-throw type. If you wish to silence a stereo system, ther install R1A and use a 3-pole, double-throw relay for $K 1$.

The basic electronics is assembled on a pc board such as that shown in Fig. 2,

Fig. 3. To use the Silencer with a CB rig and monaural radio or tape deck, use set up at (A). For a stereo system, use (B).
which also illustrates component installation. Note that some resistors and capacitors are mounted vertically because of the narrow pad spacing, and that (optional) sockets are used for the two IC's. There must be a hole directly under the center of potentiometer R4 so that this control can be adjusted through a mating hole in the bottom of the chassis. If you elect to use perforated board and either a wiring pencil or wire-wrap, try to keep the component installation similar to that shown in Fig. 2 to minimize stray r-f pickup by IC1.
The prototype basic electronics was mounted in a standard $1 / 8^{\prime \prime}$ by $61 / 4^{\prime \prime}$ by 41/8" metal two-piece chassis having suitable holes drilled in the front panel to mount function switch S1, and lamp 11. Jack J1 is mounted on the rear panel, and a suitable rubber grommetted hole should be provided for the various cables. Don't forget the hole for R4 on the underside of the chassis. Interconnections to the board are made via the small circled pads as shown in Fig. 1.

The finished circuit board is mounted on the bottom of the chassis via four small spacers, while the relay is mounted in one comer of the chassis using an L-bracket as shown in the photograph.

The r-f module is mounted in its own
$21 / 8^{\prime \prime}$ by $2^{\prime \prime}$ by $13 / 4^{\prime \prime}$ metal enclosure. A three-lug terminal strip is used to support the components, while connector J2 is mounted on one wall. A length of RG-58/U coaxial cable terminated in a suitable connector for the antenna output of the CB transceiver, is passed through a grommetted hole opposite J 2 , with the coax braid connected to the grounding lug of J 2 , and to the metal chassis. The dc output of the r-f module is passed out of the metal chassis through its own coaxial audio cable that is terminated with a connector to match $J 1$ on the main chassis.

Installation. If you are going to use the Silencer with a CB rig in conjunction with a conventional monaural radio or tape player, use the circuit shown in Fig. 3A. Use the external speaker output of the CB transceiver for the audio output. Note that a few radio speakers may have one of their terminals grounded to the speaker frame and thus to vehicle ground. If this is the case, remove this connection from the frame, connect the Silencer as shown, and ground the corresponding lead between the Silencer and the radio.

Locate the speaker leads on the radio to be sileneed and cut them. Connect
the radio audio output and speaker leads as shown in Fig. 3A. If you are going to silence a stereo system (radio or tape player), then use the circuit shown in Fig. 3B. (In the case of stereo, don't forget R1A and the relay.)

The stereo system usually has four wires that connect to the two speakers. Use an ohmmeter to determine which pair is connected together within the stereo system (share a common, usually ground, connection), then follow the wiring of Fig. 3B.

Initial Adjustment. With the Silencer connected to the CB system as shown in Fig. 3, turn off the AM/FM radio, set the Silencer function switch (S1) to the CB ONLY-OFF position, and sensitivity control R4 to its maximum resistance (minimum sensitivity) position.
Turn on the CB and set the squelch completely off. Temporarily disconnect the CB antenna from the r-f module, and adjust the CB volume so that a faint "hiss" is heard a couple of feet from the speaker. Without touching the CB, place the Silencer function switch to the FAST dELAY position, and note that after several seconds the speaker is silent.

Using an insulated screwdriver, rotate R4 very slowly from its maximum resistance until the front-panel CB ACTIVE lamp comes on and the hiss is again heard. Reconnect CB antenna, locate an unused CB channel, and normally squelch the receiver. Key the transmitter and note that the CB ACTIVE lamp comes on and stays on as long as the transmitter is keyed. Release the transmitter switch, and after a few seconds the CB ACTIVE lamp should extinguish.

Turn on the AM/FM radio and note that its output is heard in the speaker whenever the CB is squelched, providing the transmitter is not in use. You may note that sometimes the AM/FM radio is suddenly silenced when no CB call is heard. This occurs when some CB'er touches his transmitter key momentarily without making an actual transmission. The Silencer will operate as if an actual CB signal has been received. If this occurs too often, the CB may be inadequately squelched or the Silencer too sensitive. If the relay chatters when receiving a CB call, the Silencer should be set for less sensitivity (R4). When the Silencer has been set for the desired CB receiver volume, lowering the volume will reduce the Silencer sensitivity.
Lastly, note that, when power is first applied to the system, the Silencer will come on in the CB mode until the delay runs out. This is normal.

\mathbf{N}^{N}N TWO previous articles (Popular Electronics, August 1976 and September 1976), we discussed the construction of the low-cost Elf microcomputer, gave some programming examples, and described some low-cost optional input/output circuits. Here we will examine some software operating systems and discuss adding 1024 bytes of memory for as little as $\$ 20$.

Operating Systems. An operating system is a program that makes it easier to program and use your computer. For example, if you want to change $M(43)$ in the basic Elf memory, you would have to start at $M(00)$ and step through memory to location 43 before you could change it. Program 1 is a simple operating system for the Elf microcomputer. It lets you directly examine or modify any memory location. It also allows you to start program execution at any memory location. We call Program 1 ETOPS-256 (Elf Toggle OPerating System for 256-byte memory). After loading ETOPS in RAM, it can be used to help you load and run other programs.

To examine a memory location using ETOPS, set 01 into the toggles. Flip the RUN switch up and 01 will be displayed. Now set the address of the memory byte you want to examine into the toggles and push the input switch. The next time you push the INPUT switch, you'll see the selected memory byte displayed. Keep pushing the INPUT switch to see the sequence of bytes stored in memory.
To modify any memory location, set 02 into the toggles and turn the run switch up. 02 will appear. Set the address of the memory byte you want to modify (via the toggles).

Push the input switch and the Q light comes on. Now set the toggles to the value of the byte you want to place in the selected memory location and push the input switch to store it in RAM. You can store a sequence of new bytes by setting each byte into the toggles and pushing the INPUT switch. The Q light warns that you are modifying memory.

If you have the toggles set to 00 when you flip the RUN switch up, you can then set the toggles to the beginning address of a program you want to execute. Just push the input switch to start executing your program at the selected address. Your program will begin execution with R3 as the program counter.

If you've added the battery RAM option to your system, ETOPS will be ready to use as soon as you turn on power. Since ETOPS uses only 32

Build the

COSMAC "ELP" Nicrocompuler

PART 3: How to expand memory, plus more programs

0000	F8	20	A1	R1.0 = work
03	E1			$\mathrm{X}=1$
04	60	64	21	D = toggles
07	3 F	07		Wait for IN on
09	37	09		Wait for IN off
OB	32	1D		$M(1 D)$ if $D=00$
OD	F6	33	11	$\mathrm{M}(11)$ if $\mathrm{D}=01$
10	7B			$\mathrm{Q}=1$
11	6 C	A1		R1.0 $=$ toggles
13	3 F	13		Wait for IN on-
15	. 37	15		Wait for IN off
17	39	1A		$\mathrm{M}(1 \mathrm{~A})$ if $\mathrm{Q}=0$
19	6 C			M1 = toggles
1 A	64			Show M1, R1+1
1 B	30	13		Repeat M(13)
1 D	6 C	A3		R3.0 = toggles
1 F	D3			$\mathrm{P}=3$
20	00			Work area
21		$\begin{aligned} \mathrm{r} \\ (21) \end{aligned}$	$\begin{aligned} & \text { ogra } \\ & \text { to } \end{aligned}$	(FF)

0000	F8	FF	A2	R2.0 = work
03	F8	23	A5	R 5.0 = BSUB
06	F8	33	A6	R6.0 = HSUB
09	F8	OD	A3	R3.0 $=\mathrm{M}(\mathrm{OD})$
OC	D3			$\mathrm{P}=3$
OD	D5	A1		BSUB, R1.0=D
OF	6 C			D, M2 = toggles
10	3A	14		$\mathrm{M}(14)$ if $\mathrm{D} \neq 00$
12	81	A3		R3.0 $=$ R1.0
14	F6	3B	1 C	$\mathrm{M}(1 \mathrm{C})$ if $\mathrm{D}=02$
17	D5	E1		BSUB, $\mathrm{X}=1$
19	64			Show M1, R1+1
1A	30	17		Repeat M(17)
10	D5	E1		BSUB, $X=1$
1 E	51.	64		M1=D, show M1, R1+1
20	30	1 C		Repeat M(10)
22	D3			$\mathrm{P}=3$ (return)
BSUB				
23	D6			HSUB
24	FE	FE		D left x 2
26	FE	FE		D left x 2
28	A0	D6		$\mathrm{R} 1=\mathrm{D}$, HSUB
2 A	80	F1	52	M2=R1 or M2
2 D	64	22		Show M2
2 F	30	22		Go to $\mathrm{M}(22)$
31	FO	D5		$\mathrm{D}=\mathrm{M} 2, \mathrm{P}=5$
HSUB				
33	E2	FC	01	$\mathrm{X}=2, \mathrm{D}+1$
36	FA	OF	52	$\mathrm{M} 2=\mathrm{D}$ and OF
39	62	22		Select key M2
3 B	3 D	33		$\mathrm{M}(33)$ if key off
3D	7B	F8	09	Q=1, $\mathrm{D}=09$
40	B4			R4. $1=09$
41	24	94		R4-1
43	3A	41		$\mathrm{M}(41)$ if R4. $1 \neq 00$
45	7A			$\mathrm{Q}=0$
46	35	46		Wait for key off
48	30	31		Go to M(31)

bytes, you still have 224 bytes available for your own programs.

Keyboard System. Adding a hex keyboard would make your Elf microcomputer even easier to use. With 16 keys labelled 0 through F, you would have to press ' nly two keys for each byte you want to store in memory. In the second article, we described a circuit for monitoring the states of 16 switches or $k \in / s$. (See Popular Electronics, Sept. 1976, page 38, Fig. 3). If you add this circuit and a 16-key hex keyboard, you ran use Program 2-EHC ${ }^{\circ} \mathrm{S}-256$ (Elf Hex OPerating System for 256-byte memory). This program requires 74 bytes of RAM so you still have 182 bytes left for your own programs. You can also use the hex keyboard subroutine as part of your programs if desired.

After loading EHOPS in memory, you can use it as follows. To load a byte into any memory location from the hex keyboard, set the toggles to 02 and flip the RUN switch up. The 02 toggles tell EHOPS that you want to store $b: t \epsilon$: in
memory. On the hex keyboard, press the most-significant digit of a memory address followed by the least-significant digit. This address byte will be displayed and tells EHOPS where you want to start loading bytes in memory. You can now load a sequence of bytes into memory via the hex keyboard. Just press the two digits (most significant first) of each byte you want to load and they will be stored sequentially in memory starting at the selected location.
To examine any memory location (without changing its contents), set the toggles to 01 before you flip the RUN switch up. Using the hex keyboard, enter the one-byte starting address oi the sequence of memory locations you want to examine. Press any hex key twice to step through memory and display the stored bytes.

To ri \cap a program you've loaded using EHOPS, set the toggles to 00 before flipping the run switch up. Using the hex keyboard, enter the one-byte starting address of your program. It will begin running with R3 as the program counter.

EHOPS controls the hex keyboard with two subroutines called BSUB and HSUB. BSUB calls HSUB by changing the program counter to R6 with a D6 instruction. HSUB continuously scans all 16 hex keyswitches until one is pressed. It provides a switch debounce delay and waits until the key has been released. It then returns control to BSUB with the value of the pressed key in the least-significant digit of the byte in D and M2.
BSUB is called by changing the program counter to R5 with a D5 instruction. It waits until two hex keys have been pressed before returning control to the calling program with the values of the two keys in the two digits of the byte in D and M2. The most-significant digit represents the first key pressed. Any program you write with R3 as the program counter can call BSUB to obtain a byte from the hex keyboard. If you drive a speaker with the Q lines as described in the September article, you will hear an audible click each time a hex key is pressed.

Program 3 can be loaded and run us-

PROGRAM 4

*CO	F8	FO	AA	RA. $\mathrm{O}=\mathrm{FO}$
C3	F8	08	A8	R8. $0=08$
C6	D5	5A		BSUB, $M A=D$
C8	1A	28		A+1, R8-1
CA	88	3A	C6	$M(C 6)$ if R8. $0 \neq 00$
*CD	F8	FO	AA	RA, $0=F O$
DO	F8	08	A8	R8. $0=08$
D3	EA	FO	A7	R7. $0=\mathrm{MA}$
D6	64	28		Show MA, A+1, 8-1
D8	F8	FF	AC	RC. $0=F \mathrm{~F}$
DB	7 B	87		$Q=1, \quad D=R 7.0$
DD	FF	01		D-01
DF	3A	DD		$M(D D)$ if $D \neq 00$
E1	7A	87		$\mathrm{Q}=0, \mathrm{D}=\mathrm{R} 7.0$
E3	FF	01		D-01
E5	3A	E3		$\mathrm{M}(\mathrm{E} 3)$ if $\mathrm{D} \neq 00$
E7	2C	8 C		RC-1
E9	3A	DB		M (DB) if RC. $0 \neq 00$
EB	88	3A	D3	M(D3) if R8. $0 \neq 00$
EE	30	CD		$M(C D)$ if R8. $0=00$
	$77=$			tone values

PROGRAM

0000	F8	00	B1
03	F8	FF	A1
06	F8	00	51
09	E1	64	21
$0 C$	F0	FC	01
10	F8	10	B2
13	22		
14	92	$3 A$	13
17	30	09	

$$
51 \quad M 1+1
$$

$$
\begin{aligned}
& \text { R1. } 1=00 \\
& \text { R1.0 = work } \\
& \text { M1 }=00 \\
& \text { Show M1 } \\
& \text { M1+1 } \\
& \text { R2. } 1=\text { delay } \\
& \text { R2-1 } \\
& \text { M(13) if R2. } 1 \neq 00 \\
& \text { Repeat } M(09)
\end{aligned}
$$

ing either ETOPS or EHOPS: This program continuously counts up at a rate determined by the byte at $M(5 \mathrm{E})$. Be sure to start execution at $M(50)$.

Program 4 should be loaded and run using EHOPS. You should also have a speaker attached to the Q line. Start this program at $M(C 0)$ with EHOPS. You can then enter eight bytes via the hex keyboard. These bytes should have values between 02 and 7 F for best results. Each byte represents the frequency of a tone you will hear via the speaker. After

Fig. 1. Address latch. *Connect pin 19 of original 2101 RAM's to $A 10$ instead of ground.
you enter the eighth byte you'll hear the eight-tone sequence repeated over and over. You can restart the program at $M(C D)$ to hear a previously entered tone sequence.

An operating system can be designed to incorporate any desired feature. For example, you might want to examine the contents of internal 1802 registers or control the operation of a cassette recorder. As more features are needed,

Fig. 2. Eight low-cost, readily available 2102 RAM's (1024 X1) and two transmission gate packages.
you may want to dedicate the entire 256 bytes of memory in the basic system to your operating system and add another section of memory for your other programs. The 256-byte operating-system memory can be battery-powered and protected from modification by the MP switch so that it is always ready for use.

Memory Expansion. You can add 1024 bytes of memory to an Elf microcomputer using inexpensive, readily available 2102-type static RAM's as shown in Figs. 1 and 2. The 10k bus pull-up resistors are required if the highoutput level of the RAM chips isn't at least 3 volts. Bits 0 and 1 of the highorder address byte are clocked into the address latch with TPA (Fig. 1). These two latched bits are used with the loworder COSMAC address byte to provide the required 10-bit address for the 2102 RAM's. Bit 2 of the high-order address byte is clocked into the address latch for use in selecting either the original 256byte RAM or the added 1024-byte section of RAM. Disconnect pin 19 of the original two 2101 RAM chips from ground and connect to pin 12 of the 4042 address latch in Fig. 1.
The original 256 -byte memory will now be addressed as 0000-00FF and the new 1024-byte memory will be addressed as $0400-07 \mathrm{FF}$. Since all of the previous programs assumed one-byte addresses, they will not run in this expanded memory system. Programs for systems with more than 256 bytes of memory must have both the high-order and low-order bytes of address registers properly set. The previous programs can be easily modified to run in the expanded system by initializing both high- and low-order bytes of any 16 -bit register used to address memory. The foregoing counting program could be modified to run at $M(0000)$ in an expanded RAM system as shown in Program 5. In general, it adds only a few bytes to program for an expanded-memory system. By adding bits to the address latch of Fig. 1, you could address up to $64 k$ bytes of RAM. Instead of addressing extra memory, the high-order address bits could be used to select input/output circuits or devices.
Don't forget that adding memory will increase system power requirements. As the system is expanded, make sure your external power supply can handle the increased current requirements. With this in mind, you'll find that the Elf can be tailored to your needs at low cost.

A READER'S ELF PROGRAMS

1 recently constructed the COSMAC Elf described in your August (1976) issue and thoroughly enjoyed the construction and testing of this microprocessor system. I build approximately two projects a month that are illustrated in your magazine-plus some from other sources. This particular project turned out to be the most interesting I have ever constructed. Here are three programs that I found useful in illustrating various system functions.

Program I is simply an expansion of your Q-light program with additional decisions that alternately turn the Q light on and off when the input switch is depressed.
Program II displays and increments successive hex characters each time the input button is depressed. To do this, it was necessary to learn how to input to and output from the memory, using pointers in registers, and also to do simple arithmetic through the accumulator (D register).
Program III plays SOS in Morse code. The program should be loaded through the system switch registers if you have a half hour without interruption. With this program, registers are used for pointers to subroutine loops set up for time delay. Three subroutines for 0.5 second, 1 second and 3 seconds are established, addressed by changing the program counter. The main program simply turns the Q light
on and off at intervals determined by the subroutines. The memory provided in the basic Elf system (256 bytes) is enough for approximately 19 code elements. Each code element requires only 10 instructions for an on and off interval in the main program. The timing loops require the use of two registers to provide a sufficient time. In my Elf, I used a $1-\mathrm{MHz}$ crystal. Obviously, changing one instruction in the loop subroutines will vary the time as necessary. Changing or adding to the main program can change the code.
Try loading this program with the switch register if you have enough patience.
—Robert Klein

PROGRAM I
SWITCH ON AND OFF 3F
$3 F$
$\varnothing \varnothing$
37
$\varnothing 2$
IF Q OFF GO TO $\emptyset 9 \quad 39$

IF Q ON, TURN OFF AND 7A
RETURN TO $\varnothing \varnothing$
$3 \varnothing$
$\varnothing \varnothing$
IF Q OFF, TURN. ON AND 7B GO TO $\emptyset \varnothing$ (

PROGRAM II

STORE DEPENDENT VARIABLE $\varnothing \varnothing$	E4
IN LOCATION 77 WITH POINTER	F8
IN R4--DESIGNATE R4 AS RX	77
	A 4
	F8
	$\emptyset \varnothing$
	54
STORE INDEPEADENT VARIABLE $\emptyset 1$	F8
IN LOCATION 76 WITH POINTER	76
IN R5	A5
	F8
	$\emptyset 1$ (size of INCR)
	55
DISPLAY AND DECREMENT RX	64
	24
IOOK FOR INPUT SWITCH ON AND	3F
OFF	$\emptyset F$
	37
	$1 \varnothing$
ADD TWO VARIABLES AND PUT	$\emptyset 5$
RESULT IN LOCATION 77	F4 (F5 subtract)
(can be changed to subtract to count down)	54 (rs subtract)
RETURN TO START OF LOOP	
RHIUR 10 STARI OF LOOP	$\begin{aligned} & 3 \varnothing \\ & \varnothing 7 \end{aligned}$

IN IOCATION 77 WITH POINTER F8
IN R4--DESIGNATE R4 AS RX 77
A4
$\varnothing \varnothing$
54
STORE INDEPENDENT VARIABLE $\emptyset 1$ F8 IN LOCATION 76 WITH POINTER 76 IN R5

F8
D1 (size of INGR)

64
.
0
37
$1 \varnothing$
ADD TWO VARIABLES AND PUT
RESULT IN LOCATION 77
F4 (F5 subtract)
54
$3 \varnothing$

PROGRAM III
SUB ROUTINES (Must be loaded in order indicated after main program is loaded.)

Uses readily available components and an analog readout.

BY JOHN F. HOLLABAUGH

Build A 10-Hz To 1-MHz EPUT Meter

THE EPUT (Events Per Unit Time) meter is an inexpensive frequency counter that can measure sinusoidal and complex waveforms over a range from 10 Hz to 1 MHz . It uses inexpensive TTL logic, a FET front end, and an analog readout. Accuracy is quite good, as the $60-\mathrm{Hz}$ power-line frequency is used as a calibration reference. A trigger
sensitivity control is included to set the input signal threshold. The front end has a resistive input impedance of 100,000 ohms. A 1.5-millivolt (minimum) input will result in a stable EPUT reading.

About the Circuit. The schematic diagram of the EPUT meter is shown in Fig. 1, with circuit details for the input
amplifier, counting stages, and power supply shown in Figs. 2A, 2B, and 2C, respectively. A portion of the input signal is taken from the wiper of R1, the SENSItivity control, and applied to the gate of Q1, an n-channel FET, which functions as a source follower. Voltage gain is provided by the bipolar transistor Q2. This transistor boosts the input signal to a

Fig. 1. TTL counters are used for meter scaling.
$\mathrm{C} 1, \mathrm{C} 3, \mathrm{C} 6-0.047-\mu \mathrm{F}, 50-\mathrm{V}$ Mylar capacitor $\mathrm{C} 2-10-\mu \mathrm{F}, 15-\mathrm{V}$ electrolytic capacitor C4- $22-\mu \mathrm{F}, 15-\mathrm{V}$ electrolytic capacitor $\mathrm{C} 5-0.005-\mu \mathrm{F}$ disc ceramic capacitor $C 7-0.0068-\mu \mathrm{F}$ disc ceramic capacitor C8- $500-\mu \mathrm{F}, 15-\mathrm{V}$ electrolytic capacitor $\mathrm{C} 9-1000-\mu \mathrm{F}, 35-\mathrm{V}$ electrolytic capacitor D1-4-V, $1 / 2$-W zener diode
IC1-IC4-7490 decade counter IC5-555 timer
IC6-LM309 5-volt regulator
J1-RCA phono jack

R8-110,000 ohms
R10- 500,000 -ohm linear taper potentiometer (screwdriver adjust)
R11, RJ3-I megohm
R12-3300 ohms
R14- 100,000 ohms
R15-390,000 ohms
SI-l-pole, 12 -position nonshorting rotary switch (Lafayette 30 R 40144 or equivalent)
S2-SPST toggle switch
Tl-12-V, $500-\mathrm{mA}$ transformer
Misc.-Hookup wire, suitable enclosure, IC sockets or Molex Soldercons (if desired), printed circuit or perforated board, $1 / 4$-inch spacers, machine hardware, solder, etc.

Fig. 2. Circuit details are shown for the input amplifier at (A), for the biquinary counters at (B), and for the power supply at (C).
level exceeding the 2 -volt, logic-one threshold of the TTL counter inputs. The current required to drive counter IC1 is furnished by Q3, an emitter follower.
Biquinary counters IC1 through IC4, each of which comprises four flip-flops and an AND gate, provides outputs whose frequencies are one-fifth and one-tenth that of the input. These are used for range expansion of the analog meter, whose associated circuitry measures frequencies from zero to 100 Hz only. The 0-to-1-mA meter is connected to the output of IC5, a 555 timer operating in the one-shot mode. The average value of the pulse output is directly proportional to the number of pulses occurring each second, and this rate is governed by the frequency of the signal that triggers IC5.
The trigger signal, which is provided by the amplifier in the direct ($X 100 \mathrm{~Hz}$) mode, and by the outputs of the counters on the higher ranges, is inverted by Q4 to make the negative-edge triggering of IC5 compatible with the positive-edge triggering of the TTL counters. The width of the pulse output of $I C 5$ is determined by the setting of R10. This is the only calibration adjustment required, because the meter circuit always works with signals below 100 Hz . Switch S1 selects which signal will trigger the 555 .

To eliminate the need for an expensive meter with good dynamic damping, electrolytic capacitor C8 is connected across the meter. This provides stable readings down to 10 Hz . Without the capacitor, the meter specified vibrates very severely below 20 Hz .

Construction. Because the EPUT circuit is fairly simple, it can be assembled on a printed circuit or perforated board. The use of an LM309 voltage regulator (IC6) is strongly recommended, because 7490's are very intolerant of even brief overvoltages. Try to keep the board layout clean, and by all means use the minimum amount of heat and solder necessary for good, clean connections. Integrated circuits can be soldered directly to the circuit board, or if desired, IC sockets or Molex Soldercons can be used. Use a metal utility box as an enclosure. A $6^{\prime \prime} \times 41 / 2^{\prime \prime} \times 3^{\prime \prime}(15.2 \times 11.4 \times$ 7.6 cm) utility box provides ample space for all components. Bolt the regulator IC to the enclosure using $1 / 4$-inch $(6.4-\mathrm{mm})$ spacers. This is done to provide a good heat sink and to ground the case of the integrated circuit.

Calibration. Connect a source of lowvoltage, $60-\mathrm{Hz}$ ac to input jack $\mathrm{J1}$ using a length of shielded or small coaxial cable. A 6.3-volt filament transformer makes a fine signal source. Higher voltages can be used, but don't exceed 12 volts peak at this or any other time. Use a resistive voltage divider, if necessary, to attenuate the input signal. With Range switch S1 in the " $X 100 \mathrm{~Hz}$ " position, advance sensitivity control R1 until a reading is obtained on the meter. Then adjust R10, the calibrate control, for a reading of 0.6 mA on the meter. This corresponds to a reading of 60 Hz ($0.6 \times 100 \mathrm{~Hz}$). This is the only calibration adjustment necessary. Of course, you can check for proper counter opera-
tion with a $100-\mathrm{kHz}$ or $1-\mathrm{MHz}$ frequency standard.

Operation. You can use the EPUT meter to measure complex waveforms or sine waves up to a frequency of 1 MHz . Just be sure that you don't exceed 12 volts peak input. Use shielded cable for the input signal to minimize noise pickup. If you want to measure an unknown frequency, start with S1 in one of its higher ranges. Adjust $R 1$ until you get some needle movement in M1. If the needle stays at the lower end of the scale, go to a lower position of the RANGE switch until a usable reading is obtained.

"Ten-Four!"

Herb Laney's a tough-minded optimist. How about you?

Herb takes his future seriously. Without worrying about it. He knows his CIE training is giving him valuable skills in electronics. Skills a lot of people will be glad to pay for. And that's good reason for all the optimism in the world. How about you?

Learning new skills isn't something you just breeze through. Especially in electronics. You've got to really want success if you're going to build your skills properly.

Herb knew that right from the start. But he also knew what rewards he could earn if he took some time and did it right. He knew that, in today's world, people who really know electronics find a lot of other people...even whole industries ... looking for their help.
How about you? How much do you want that thrilling feeling of success... of being in demand? Enough to work for it?

Why it pays to build skills and know-how.

One of the things that got Herb interested in electronics is that electronics seems to be something just about everybody needs. Almost everywhere you look these days in a business office ... a manufacturing plant...a department store . . . a doctor's office . . . a college ... even your own home you'll find all kinds of electronic devices.

That spelled "opportunity" to Herb. Plus he liked the idea of having a set of skills that might lead to jobs in places as different as a TV station... a hospital... an airport . . . a petroleum refinery.

But what Herb liked most about electronics is that it's just plain interesting. Even though it takes time and effort to learn, the subject is so fascinating it almost doesn't seem like "studying" at all!

How CIE

keeps you interested.
CIE's unique study methods do a lot to keep you interested. Since electronics starts with ideas... with principles...CIE's Autoprogrammed ${ }^{W}$ Lessons help you get
the idea-at your own most comfortable pace. They break the subject into bite-size chunks so you explore each principle, step by step, until you understand it thoroughly and completely. Then you start to use it.

How CIE helps you

turn ideas into reality.
Depending on the program you choose, CIE helps you apply the principles you learn in a number of different ways.

If you're a beginner, you'll likely start with CIE's Experimental Electronics Laboratory. With this fascinating workbench lab, you actually perform over 200 experiments to help you grasp the basics! Plus you use a 3-in-1 precision Multimeter to learn testing, checking, and analyzing.
In some programs, you build your own 5 MHz triggered-sweep. solid-state oscilloscope - and learn how to "read" waveform" patterns .. . how to "lock them in" for closer study ... how to understand and interpret what they tell you.

To help you develop practical, skill-building knowledge you then receive a Zenith $19^{\prime \prime}$ diagonal

solid-state color TV featuring nine removable modules. You learn how to trace signal flow ... how to detect and locate malfunctions... how to restore perfect operating

What to do first.
Get all the facts. Send for CIE's FREE school catalog and career information package TODAY. Check all the CIE programs-and see which one's right for you. Do it now.

Why it's important

to get your FCC License.
More than half of CIE's courses prepare you for the FCC License exam. In fact, based on continuing surveys, better than 4 out of 5 CIE graduates who take the exam get their License!
That's important. For some jobs in electronics, you must have your FCC License. For others, employers often consider it a mark in your favor. It's governmentcertified proof of specific knowledge and skills!

Free catalog!

Mail the card. If it's gone, cut out and mail the coupon. If you prefer to write, mention the name of this magazine. We'll send you a copy of CIE's FREE school catalog-plus a complete package of independent home study information! For your convenience, we'll try to have a representative call to help you with course selection. Mail the card or coupon ... or write: CIE, 1776 East 17th Street, Cleveland, Ohio 44114.
 standards.

Manufacturers of high-fidelity audio amplifiers like to stress the type of circuit-class A, B, C, D, or G-used in their latest products. Let's take a look at what all these various types are and why some of them have taken on special meaning in recent years. Despite the fact that class-B amplifiers are by far the most widely used, we'll start at the beginning of the alphabet.

Class-A Amplifiers. Amplifiers are grouped in classes primarily on the basis of the period of conduction of a given amplifying device. In a class-A amplifier, a single output transistor conducts current continuously. An audio signal applied to the amplifier stage (Fig. 1A) varies the amount of current in the output according to the transfer characteristic shown in Fig. 1B. Quiescent current I_{C} flowing through the transistor in the absence of an audio signal must be great enough so that even during negative half-cycles of the audio waveform, the output is not cut off completely. Thus the output waveform is a more or less exact replica of the input.

The chief disadvantage of the class-A amplifier is its inefficiency. Since average current flow is the same whether or not a signal is applied to the input, class-A amplifiers have an overall efficiency of between 20% and 30%. Only about 25% of the energy applied to the transistor gets converted into useful output power. The rest of the energy must be dissipated as heat, within the transistor itself or into a heat sink to which the transistor is thermally coupled. Class-A amplifier stages are frequently used in low-powered products. Since these products are generally designed to produce only a fraction of a watt of audio output, the poor efficiency of class-A operation is not a problem. Recently, the advantage of the extreme linearity of the class-A circuit has prompted some hi-fi amplifier manufacturers to resort to this mode of operation even in higher-powered audio amplifiers. Such designs, however, have necessitated the use of extremely large heat sinks and oversize power supplies.

Class B. In the class-B audio amplifier, each of two transistors is biased very nearly to cutoff, as shown by the transfer characteristic of Fig. 2B. Since a single transistor now conducts during only half the applied signal, two transistors must be used to reproduce the entire wave-form-each arranged to handle one alternation of the waveform. One way of doing this is to use the transformer-cou-

CLASSES of
 AUDIOAMPLIFERS

What the various types mean to today's audiophile.

BY LEN FELDMAN

pled push-pull transistor stage in Fig. 2A. Here, the waveform applied to the base of Q2 has a polarity that is the opposite of that applied to the base of Q1. Each transistor, therefore, conducts during opposite halves of the signal waveform's excursions. The two halves of the amplified waveform are combined in the primary winding of T 2 , the secondary of
which feeds the speaker load. Transformer T2 is easily eliminated by using a complementary pair of output (matched npn and pnp) transistors so that each handles half the input signal waveform. A capacitor-coupled output stage is shown in Fig. 3A, while Fig. 3B shows how, by means of positive and negative power supplies, the output capacitor can

Fig. 1. At (A) is typical class-A circuit. Transfer characteristic (B) shows how stage is biased into heavy conduction.

Fig. 2. Circuit (A) and transfer characteristic (B) for class-B amplifier, biased near cutoff.
be eliminated to produce the popular "direct-coupled" output stage featured in most currently produced solid-state hi-fi amplifiers.
The great advantage of class-B operation is higher efficiency than in class-A amplifiers. In typical class-B circuits the efficiency can range as high as 65\%. The chief disadvantage of this circuit lies in the fact that the transition between conduction of one transistor and the other may be less than perfect. If one transistor stops conducting just a bit before the other begins to conduct, the output waveform may contain a discontinuity, which is generally referred to as "notch distortion" or "crossover distortion." This condition is illustrated in Fig. 4. Unlike overload or clipping distortion, which occurs only when an amplifier is driven beyond its rated power output, notch distortion can occur at all listening levels. In fact, it is more bothersome at low output levels, where it constitutes a greater percentage of the total output. In addition, notch distortion generally produces higher order harmonics (seventh, ninth, etc.) that are usually more audibly annoying than equivalent percentages
of second- and third-harmonic distortion most commonly associated with "clipping" or overload conditions in an audio amplifier.

Class AB. This type of operation falls midway between classes A and B. While neither of the two transistors in a class$A B$ output stage conducts over the full audio input signal waveform, each continues to conduct for more than a halfcycle. The operating point for a transistor biased for class $A B$ operation is shown in Fig. 5. In class-AB circuits,
notch distortion is eliminated because, during the critical transition from positive to negative polarity of the input signal waveform, both output transistors are conducting. The efficiency of a class-AB circuit is also somewhere between that of classes A and B circuits.

Class C. In the class-C amplifier, conduction occurs over less than half a waveform cycie, as illustrated in the transfer diagram of Fig. 6. Class-C amplifiers are not used in audio applications because there is no way for such an amplifier to follow the complex waveform shapes of an audio signal. Rather, class-C amplifiers find application in ra-dio-frequency ($r-f$) amplification, where a single frequency is to be amplified. Resonant LC (inductive-capacitive) circuits incorporated at the input and output sides of a class-C amplifier provide a socalled "flywheel" or "pendulum" effect that recreates the "missing" portion of each cycle of the input waveform. In effect, energy is supplied to the associated resonant circuits for a short period during each alternation in much the same way that a light tap applied to the

Fig. 5. Class AB requires two transistors in push-pull, operates between class A and B.

Class G. We have not inadvertently skipped "classes E and F." In fact, when Hitachi first developed its high-efficiency circuit, the company had called it class E. Later, it was discovered that there already existed amplifier configurations that had been assigned the designations class E and class F. Accordingly, Hitachi elected to call its high-efficiency amplification scheme class G, though in some of the literature you may find that the system is still referred to as a Series E audio amplifier.

In a class-G amplifier, double pairs of output transistors are used in push-pull operation (Fig. 7). When the input voltage is lower than V_{1} (or V_{1}), Q 2 and Q2' are cut off and current flows through Q1 and Q1' to the load. Once the input voltage exceeds V 2 , the current to the load is through Q2-Q1 and Q2'-Q1'. For music reproduction, the amplifier operates most of the time with V_{1} and $\mathrm{V}_{1}{ }^{\prime}$ (more than 90%) and a very small fraction of the time from V2 and V2'. Power dissipation is thus low.

Crossover distortion from V1 to V2 and vice versa is minimized by using high-speed transistors and diodes. Residual switching spikes or instantaneous signal dropout are minimized by circuit design techniques.

Although the efficiency of a class-B amplifier can be as high as 65%, it should be understood that this level is reached only when the amplifier is delivering its rated output. At all lower levels, efficiency is considerably less. For the class-G circuit, since each transistor is operating closer to its optimum efficiency point more of the time, the overall efficiency of the system is improved to about 75% or 80% for much of the time that conduction of audio signals actually occurs.

Fig. 7. Simplified diagram of class G amplifier stages.

Summing Up. It should be clear from this brief analysis of the various amplifier classes that each has its advantages and disadvantages. Manufacturer's claims notwithstanding, to say that a class-A amplifier is inherently better than a class-B amplifier or that a class-D switching amplifier is better than a class-G amplifier is an oversimplification at best. Since all classes of amplifiers are currently used in modern amplifier designs, we must conclude that the choice of class involves a series of trade-offs and that properly executed designs in each amplifier class can result in high-fidelity audio amplifiers that come close to faithful reproduction of sound. And faithful reproduction of sound is, after all, the end goal of all hi-fi products.

MOST electronic games, like dice and roulette, depend purely on luck. The "Strategy" game presented here, however, depends on the player's skill and the strategic maneuvers one exercises to win. Each of up to four players tries to get "home" before the others. A player can move directly toward home, a step at a time, or use strategy to move an opponent backward, while sacrificing a chance to move forward. In either case, a relative degree of skill is required, the amount of skill determined by a variable-rate blinking LED.

Directly in front of each player's position on an $18^{\prime \prime}(45.7-\mathrm{cm})$ square playing field is a set of 10 LED's arranged inside a colored arrow that points toward the center of the field. At the center of the field is a master LED that blinks at an adjustable rate. As each player's turn comes up, he tries to score and move one step closer to the point of his arrow by pressing his SCORE pushbutton switch. Here is where the skill comes in because the sCORE button must be pressed at the exact instant the master LED flashes on. If the score button is pressed too soon or too late, the player fails to score. Since the score button generates only a short pulse when it is operated, timing is very critical. Holding down a SCORE button will be ineffective because this pulse is generated only when the button is initially pressed. Changing the flash rate of the master LED determines the level of difficulty in playing the game.

Fig. 1. Each time a player's pushbutton is operated, a single pulse is generated by its IC1.

Fig. 2. Pulses are applied to player's LED or opponent's. Fig. 3. Each counter drives its decoder to turn on LED's.

PARTS LIST

C1,C2,C3.C4,C6,C8-0.01- $\mu \mathrm{F}$ dise capacitor
C5-1- $\mu \mathrm{F}, 15-\mathrm{V}$ electrolytic capacitor
C7-1000- $\mu \mathrm{F}, 25-\mathrm{V}$ electrolytic capacitor
C9-1- $\mu \mathrm{F}, 15-\mathrm{V}$ nonpolarized capacitor
Dl through D4- IN4002 rectifier diode
Fl- $1 / 2$-ampere standard fuse
IC1,IC2-7400 quad 2-input NAND gate
IC3,IC4-7411 triple 3-input NAND gate
IC5 through IC8-74192 up/down decade counter
IC9 through IC12-7441 one-of-10 decoder/ driver (see text)
IC13-555 timer
IC14-LM309K 5-volt regulator
Q1.Q2-2N2222 transistor
Q3-Programmable unijunction transistor (Radio Shack No. 276-119 or similar)

The following resistors $1 / 2$-watt, 10%
R1,R3,R5,R7,R34-1.2 megohms
R2,R4,R6,R8-100 ohms
R9 through R29.R40-4700 ohms
R30 through R33-390 ohms
R35,R38-10,000 ohms
R37-220 ohms
R39-330 ohms
R41-22,000 ohms
R43-27,000 ohms
R44-56,000 ohms
R36-100,000-ohm potentiometer with spst switch
R42-10,000-ohm potentiometer
S1 through S4-Spst normally open pushbutton switch
S5 through S8-Single-pole. four-position nonshorting rotary switch
S9-Momentary-action pushbutton switch
with one set each normally open and normally closed contacts
S10-Spst switch (part of R36)
SPKR-8-ohm miniature speaker T1-6.3-volt, 1.5-ampere transformer Misc.-Two $191 / 2^{\prime \prime}$ lengths of $1^{\prime \prime} \times 3^{\prime \prime}$ pine for frame sides; two $18^{\prime \prime}$ lengths of $1^{\prime \prime} \times 3^{\prime \prime}$ pine for frame sides; two $18^{\prime \prime}$ lengths of $1^{\prime \prime} \times 2^{\prime \prime}$ pine for cleats; two $161 / 2^{\prime \prime}$ lengths of $1^{\prime \prime} \times 2^{\prime \prime}$ pine for cleats; one $18^{\prime \prime}$-square piece of $1 / 4^{\prime \prime}$ plywood or Masonite for playing field; one $18^{\prime \prime}$-square piece of $1 / 4^{\prime \prime}$-thick Masonite pegboard for bottom plate; fuse holder; printed circuit or perforated board; IC and transistor sockets (optional); paint; sandpaper; line cord; rubber feet (4); white glue; finishing nails: woodscrews (I" long); control knobs (4); hookup wire; solder; etc.

In addition to being able to adjust the difficulty of play with the timing control, each player has a PLAY/SELECT switch that he can use to attempt to prevent his opponents from scoring. With this switch, a player can elect to advance his own position on the board or cause an opponent to retreat one step. The latter strategy is useful when an opponent is getting too close to home and a player is willing to sacrifice his own advancement to send him back.

Fig. 5. Power supply is conventional regulated 5 -volt system.

About the Circuit. The complete schematic diagram of this game is shown in Fig. 1 through Fig. 4, while the power supply common to all circuits is shown schematically in Fig. 5. Starting with Fig. 1, when a player presses his SCORE button (S1, S2, S3, or S4), the inputs of the appropriate NAND gate in IC1 are grounded by the capacitor (C1, C2, C3, or C4). Since the inputs to the NAND gate are also connected to the common +5 -volt line through separate 100 -ohm resistors, the capacitor quickly chargés, returning the output of the gate to its original low state. When the score

Fig. 6. Actual-size etching and drilling guide is shown above with component layout at left. External connections are also shown at left.

$$
\begin{aligned}
& \text { SEE" OOT\& TONE" } \\
& \text { Jony } 77 \mathrm{P} 7
\end{aligned}
$$

\title{

Learn electronics easier... with HEATHKIT

\section*{MONEY-BACK

MONEY-BACK GUARANTEE

We're so confident you will enjoy and benefit from these five courses, that if for any reason you are dissatisfied, we will refund the full purchase price of the course text material.

faster...at lower cost... Self-Learning Courses!

COURSE 1: DC Electronics

An ideal introduction to electronics. Covers current, voltage, resistance, magnetism, Ohm's law, electrical measurements, DC circuits, inductance and capacitance. Discusses matter, atoms, current, flow, voltage rises and drops, series and parallel connections, magnetic fields, voltage dividers, network theorems, more. Includes text, records and 56 parts for 20 different experiments. Average completion time, 20 hours. 2.0 Continuing Education Units and certificate for passing optional final exam.
Course EE-3101
.39 .95

COURSE 3: Semiconductor Devices

Essential for understanding latest solid-state equipment. Covers fundamentals, diodes, zener diodes, special diodes, bipolar transistor operation and characteristics, FET's, thyristors, integrated circuits and optoelectronics. Discusses holes, current flow, N and P types, biasing, tunnels and varactors, PIN, IMPATT, gain, cutoff and leakage current, SCR's, bi-directional triodes, light sensitive and light emitting devices, more. Includes text, records and 27 parts for 11 different experiments. Average completion time, 30 hours. 3.0 Continuing Education Units and certificate for passing optional final exam.
Course EE-3103
.39 .95

LEARN DIGITAL TECHNIQUES

Our most advanced self-learning course prepares you for the world of computers and microprocessors, with particular emphasis on circuit design. Covers digital fundamentals, semiconductor devices for digital circuits, digital integrated circuits, Boolean algebra, flip-flops and registers, sequential logic circuits, combinational logic circuits, digital design and digital applications. Discusses TTL, ECL, CMOS, PMOS, NMOS; integrated circuits; SSI, MSI and LSI; ROM's, PLA's, microprocessors, ORDER DIGITAL TECHNIQUES PROGRAM AND TRAINER. .
computers and more. Assumes completion of Heathkit courses 1 through 4 above, or equivalent knowledge. The special digital techniques experimenter/ trainer helps you perform all the experiments in the course, and when you complete the course, build and design your own circuits. Course includes text, records and 44 parts for 24 different experiments. Average completion time, 40 hours. 4.0 Continuing Education Units and a certificate for passing final exam. AINER. . . . $\$$

HEATH IM-17 VOLT-OHM METER

All Electronic Learning Programs require a VOM to make electrical measurements. We suggest the Heath IM-17 as the ideal "all-purpose" unit. All solid state with FET input for better accuracy. Portable battery operation, zero and ohms adjust, accessory probe jack. Comes with DC polarity switch, three test leads; batteries not included. Easy 3 hour assembly.

COURSE 2: AC Electronics

Provides an understanding of most commonly used circuits. Covers alternating current, AC measurements, capacitive and inductive circuits, transformers and tuned circuits. Discusses waveforms, period and frequency, meters, scopes, series and parallel circuits, RC filters, dividers, phase shifts, reactance, vectors, transformer theory and characteristics, series and parallel resonance, more. Includes text, records and 16 parts for 8 different experiments. Average completion time, 15 hours. 1.5 Continuing Education Units and certificate for passing optional final exam.
Course EE-3102
.39 .95

COURSE 4: Electronic Circuits

Outstanding explanations of basic circuits. Covers basic amplifiers, special purpose amplifiers, operational amplifiers, power supplies, oscillators, pulse circuits, modulation and demodulation. Discusses amplifier functions and configurations, class of operation, audio characteristics, video amplifiers, buffers, IF's, rectifiers, voltage multipliers, voltage regulation, basic oscillators, RC waveshaping, clipping, AM, FM and SSB, modulation fundamentals and more. Assumes knowledge of courses 1 through 3 or equivalent and requires an oscilloscope for some experiments. Includes text, records and over 110 parts for 18 different experiments. Average completion time, 30 hours. 3.0 Continuing Education Units and certificate for passing optional final exam.
Course EE-3104 .49 .95

HEATHKIT EXPERIMENTER/TRAINER

For use with Heathkit Electronics Courses 1 through 4-helps you perform all the experiments quickly and easily. Has solderless breadboarding sockets, dual variable power supply for positive and negative voltages, sine and square wave signal source, center-tapped line transformer. After you complete the course, the trainer is ideal for experimenting and breadboarding with your own circuit designs.
Kit ET-3100
\$5995

[^2]
GAMERULES

1-Rotate SPEED control clockwise to turn on power and adjust level of game difficulty.
2-Press and release reset switch.
3-Choose (by lot, with dice, or by cutting cards) starting player.
4-First player begins by setting his PLAY/. sELECT switch to his own color and trying to press his SCORE button at exact instant master LED turns on.
5-If a player is successful in scoring a point, his LED will advance one step. Whether or not the first player scores, next play goes to the next player in a clockwise direction around the board.
6 -When an opponent gets near the finish line, it is possible for any other player to move him back one step by setting his PLAY/SELECT switch to the other player's color and operating his sCORE button. The same odds apply whether a player wishes to advance his own score or send another player back one step. A player who elects to send an opponent back forfeits his chance to score.
7 -First player to reach home is the winner. If desired, the game can be played to determine the second- and thirdplace winners.
8-Players can mutually agree to change the rules to add variety to the game. For example, instead of one play at a time, each player can be allowed to score as many points as possible in a given period of time. Another possibility is to allow each player two scoring attempts per furn. In this case, he can elect to score twice, move one or two opponents back, or move one player back and also score.
button is released, the output remains low and the capacitor discharges through the 1.2-megohm resistor until the circuit is again ready to generate a pulse. The RC charge/discharge time, consequently, becomes an effective debounce circuit.

The output from the IC1 NAND gate is coupled to one input of NAND gate IC2, where it is combined with the output pulse from the clock generator (Fig. 4). These gates determine if the player "scores" by detecting simultaneous inputs to the IC2 gate. The logic rules for a two-input NAND gate require that if either input is low, the output will be high. Also, if both inputs are high, the output will be low. Hence, if the positivegoing pulse generated by operation of the sCORE button and the positive-going clock pulse are present at the same instant, the output of that particular gate in IC2 will go low for the duration of the pulse-coincidence interval. If the two pulses do not occur simultaneously, the output of the $I C 2$ gate will remain high, as it does between plays, and the player will not score.

When each player has taken his turn, the next player has the option of either advancing his own position or sending his opponent's position back one step. He does this by setting his pLAY/sELECT switch (S 5 through S 8 in Fig. 2). This circuit routes the player's puise to the upcount input of his own counter (IC5, IC6, IC7, or IC8 in Fig. 3) or to the downcount input of the opponent's counter selected by the PLAY/SELECT switch.

The up/down counters shown in Fig. 3 will advance one count for each low-to-high transition of the up-count input when the down-count input is held high and the clear input is held low, the latter via $S 9$ in Fig. 3. Conversely, the counter will back up one count for each high-tolow transition at the down-count input when the up-count input is held high and the clear input is held low. At the end of each game, S 9 must be pressed mo-

Fig. 8. Optional tone control can be connected to different portions of circuit (experimentally) to make the desired sound effect.

Fig. 7. Diagram shows layout of top of prototype game. Arrows are color-coded on 18"frame.
mentarily to reset the system for a new game.

The BCD output of each up/down counter is decoded by a 1 -of-10 decoder (IC9 through IC12 in Fig. 3), with each of the 10 outputs connected to its own LED. Hence, there are 10 LED's for each player, all of which are driven by their own decoder. Only one LED at a time is on at any given time for each player. The glowing LED determines the player's position during the game. As the player advances position, the next LED toward the point of his arrow comes on and the position vacated extinguishes. Needless to say, the player who reaches the point of his arrow first is the winner of the game. Because only one LED for each player is on at any given time, only one current-limiting resistor (R30 through R33) is required for each player position. The absolute maximum current output of the decoder specified in the Parts List is 10 mA . If you choose LED's that require more current, substitute 7445 IC's in place of the 7441 's specified. The 7445's are capable of delivering up to 80 mA per output.

The clock circuit shown in Fig. 4 contains a 555 timer-IC oscillator whose time constant is approximately one pulse/second. Adjustment of potentiometer R36 determines the on time of master indicator LED1. With the component values specified, the on time of the LED can be varied from about 0.01 to 0.1 second. This particular time span was selected because most people have a reflex action time of 0.3 second or longer. The intent here is that a player will not be able to wait for LED1 to flash and then try to score by operating his SCORE switch. To be successful in scoring, a player must anticipate the flash. For this
reason, the game challenges a person's timing skill, rather than his reflexes.

Transistor Q1 is used as an inverter and TTL level converter. The power supply shown in Fig. 5 employs full-wave bridge rectification of the stepped-down ac and a 5-volt IC regulator.

Construction. Except for the LED's, switches, and power supply, the complete circuit can be assembled on a single printed circuit board. The etching and drilling and component-placement

Teach Yourself! Digital Electronics

These courses were written by experts in electronics and leaming systems so that you could leach yourself the theory and application of digital logic. You work at your own pace and must respond by your own pace and must respord by
answering questions on each new piece of information before proceeding

Design of Digital Systemis is written for the engineer seeking ta learn more obout digital electronics. Its six valumes - eoch $11-1 / 2 \mathrm{in} . \times 8-1 / 4 \mathrm{in}$. - are designed to lead you step-by-step through number systems and Boolean algebra, to memories, caunters, arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers.

Digital Computer Lagic and Electronics is designed for the beginner. No mathemotical knowledge other thon simple arithmetic is assumed. It cansists of four volumes and serves os an introduction to the subject of digitol electronics. Everyane can learn fram it.

SEVEN.dAY MONEY-baCK GUARANTEE

Technology Trends pezz7

P.O. BOX 732, MANHÁSSET, NY 11030

PLEASE SEND ME:

__sets of Design of Digital Systems at $\$ 19.88$
—_sets of Digital Computer Logic and
Electronics at $\$ 14.88$
__ sets of both courses at $\mathbf{\$ 2 9 . 9 0}$
(add $\$ 2.50$ shipping and handling)
Enclosed is my check or M.O. for $\$$
Charge my: \square BankAmericard \square Master Charge
No:
M.C. Bank No.

Exp. Date:
Signature
Name
Address
City/State/Zip
NY residents add City and/or State Sales Tax.
CIRCLE NO. 59 ON FAEE INFORMATION CARD
guides for the pc board are shown in Fig. 6. To conserve space on the pc board, pull-up resistors R9 through R20 mount directly on PLAY/sELECT switches S5 through $S 8$.

The playing field should be mounted in a frame that leaves enough depth under the field to accommodate the circuit board assembly and power supply. If you have a miter box, you can construct the frame with miter joints, in which case use four $191 / 2^{\prime \prime}(49.5-\mathrm{cm})$ long pieces of $1^{\prime \prime} \times 3^{\prime \prime}(25.4 \times 76.2-\mathrm{mm})$ pine. Otherwise, simple butt joints will serve just as well. Fasten the joints together with finishing nails and white glue.

Glue and nail the $1^{\prime \prime} \times 2^{\prime \prime}(25.4 \times$ $50.8-\mathrm{mm}$) pine to the inner walls of the frame, spacing it $3 / 8^{\prime \prime}$ to $1 / 2^{\prime \prime}$ (9.5 to 12.7 mm) from the top edge of the frame. This will provide a convenient platform on which to mount the playing field board. Smoothly sand and paint or varnish the frame, making sure you do not paint or varnish the inside cleat.

Smoothly sand and paint the top surface of the playing field board white. When the paint has completely dried, drill the LED and control holes as illustrated in Fig. 7. Then paint on the color coded arrows. Apply a liberal bead of white glue to the upper surfaces of the cleats and lower the playing field board into place. Weight down the board with a few books until the glue has set.

Mount the LED's in the playing field's holes, using small dots of glue to hold them in place. Then mount the four SCORE, four PLAY/SELECT, and single SPEED Controls in their respective locations. The main circuit board and power supply can be mounted on the peg board used as the bottom plate of the project. Route the line cord through one of the holes on the pegboard, after first enlarging it. Secure the bottom plate to the frame with eight woodscrews. Finally attach rubber feet to the frame.

Sound Effects. If you want sound effects with your game, you can use the experimental circuit shown in Fig. 8. This circuit employs driver transistor Q2 to trigger programmable unijunction transistor Q3. It can be connected to various points in the main circuit, such as the master LED, to produce an audible "beep" when the LED flashes.

You can try wiring a 555 into the circuit to serve as an oscillator that produces various sounds. As an example, you can set the sound-effect system to produce a low-pitched tone for an unsuccessful scoring attempt and a highpitched tone for a successful attempt. \diamond

You can go into business for yourself in the city or community of your choice as a Western Auto owner.
Western Auto helps with your site selection and with your lease. We have a "total" program including training, advertising, bookkeeping, display and financing of customer purchases.
We have no contract fee, franchise fee or royalty on sales. Your investment goes into your store and cash operating reserve. If you qualify for a Western Auto loan we can even help you finance your store, where you can be your own boss.
Why don't you join the 500 people who become Western Auto Associate Store owners each year? For more information, call today TOLL FREE

1-800-821-7700

Ext. 818
Missouri Residents Call 1-800-892-7655, Ext. 818
 CIRCLE NO. 62 ON FREE INFORMATION CARD

Solid State

By Lou Garner

TACHOMETER-SPEED SWITCHES

AST November, you may recall, we discussed a number of lesser known semiconductor devices which we dubbed rara avises-rare birds. This month, let's take another visit to the rare-bird house and examine a family of interesting spe-cial-purpose IC's introduced recently by the National Semiconductor Corporation (2900 Semiconductor Drive, Santa Clara, CA 95051). As shown in the functional block and pin connection diagrams, Fig. 1, the family includes four mem-bers-types LM2907, LM2907-8, LM2917, and LM2917-8. Described as "tachometer-speed switches," all four devices use the same basic moriolithic chip, and each comprises a frequency-to-voltage converter and op amp/comparator. Supplied in 14-pin DIP's, the LM2917 differs from the LM2907 in that an on-chip zener regulator circuit is connected in the former to provide extra input protection. The " 8 " suffix versions are assembled in 8-pin DIP's and differ from the standard configurations in offering a ground-referenced input together with an internal connection between the frequency-to-voltage converter (tachometer) output and the op amp noninverting input. All four IC's can sink or source output currents of up to 50 mA , offer a typical linearity of $\pm 0.3 \%$, can dissipate up to 500 mW , and are designed for operation on dc sources of up to a maximum of 28 volts.

Despite their special-purpose designation, the tachometerspeed switches are exceptionally versatile devices and may be used in a variety of exciting and valuable projects. Depending on the peripheral circuitry and types of input and/or output devices used, these IC's can serve effectively in speed alarms, over/under speed monitors and controls, frequency-to-voltage converters, speedometers, breaker-point dwell meters, speed governors, tachometers, cruise controls, touch- or sound-activated switches, automatic door lock, clutch and horn controls, capacitance meters, delay switches, and antiskid sensor/controls. Operating on 6-to-28-volt dc supplies, the devices can be driven by voltage or current sources or by special sensors, such as magnetic pickups, and can be used to drive LED's, power transistors, relays, SCR's, meters, and similar units requiring currents of up to 50 mA .

Although the tachometer-speed switch internal circuitry is relatively complex, its basic principle of operation is comparatively simple and straightforward. An external pulsating dc or ac signal, derived from a sensor or other source, is applied to a differential amplifier driving a positive feedback flip-flop. The flip-flop, in turn, controls a charge pump which charges or discharges an external capacitor between two voltage levels. The capacitor's average pump current is directly proportional

Fig. 1. Block and pin connection diagrams.

to the supply voltage, the capacitor's value, and the charging rate. Since the capacitor's value is fixed and the supply voltage constant, the pump current is directly proportional to the input frequency. Parallel drivers furnish a current identical to the pump current to an external load resistor, bypassed by a second capacitor to filter the ac ripple components. As a result, the average dc voltage across the external load resistor is also directly proportional to the input frequency. This portion of the IC-the input differential amplifier, flip-flop, and charge pump-constitute a basic frequency-to-voltage converter, or tachometer.

The tachometer section's output is coupled to an operational amplifier driving a medium-power-output transistor. Depending on the external connections, the op amp may be operated either as a conventional amplifier or as a voltage comparator. If the op amp is used as a voltage comparator, its output remains essentially at zero until the input frequency (hence the tachometer section's output voltage) reaches a predetermined value established by a fixed bias applied to its inverting input terminal. Driven by the op amp, the output transistor, an npn type, has uncommitted emitter and coliector terminals, permitting it to serve either as a sink or source to an external load device such as a meter, LED, etc.

Typical application circuits for the tachometer-speed switch IC's are illustrated in Figs. 2, 3, and 4. Abstracted from the 14page data brochure for the LM2907/LM2917 family published by National Semiconductor, these circuits are intended as general guides rather than as detailed construction plans and are suitable for use by more advanced experimenters and hobbyists as well as technicians and engineers. In some cases, not all component values are specified, for these must be determined by the individual designer to meet his specific performance requirements or to match external load devices, such as meters. On the other hand, as long as good wiring practice is observed, neither layout nor lead dress should be overly critical, permitting the individual designer/builder to use his own choice of assembly techniques, including perf board, pc board, or chassis construction and point-to-point wiring. Generally, all resistors are half-watt units, all capacitors either low-voltage ceramic or plastic film types, and all external diodes general-purpose devices.

Featuring the LM2907-8, a minimum component tachometer circuit is given in Fig. 2A. Here, a variable reluctance magnetic pick-up driven by a toothed wheel serves as the input sensor. The external charge pump capacitor is a $0.01-\mu \mathrm{F}$ unit, while a 100,000 -ohm resistor bypassed by a $1.0-\mu \mathrm{F}$ capacitor serves as the tachometer section output load. The final output load is a 10,000 -ohm resistor. In operation, the dc voltage developed across the output resistor is directly proportional to the input frequency and hence to the wheel rpm. If a suitable high-impedance voltmeter is connected across the output load, it can be calibrated directly in terms of rpm.

A few of the many possible automotive applications for the tachometer-speed switch IC are illustrated in Figs. 2B, 3A and 3B. A breaker point dwell meter circuit using the LM2917 is shown in Fig. 2B, while engine rpm meter circuits using the same device are given in Figs. 3A and 3B. The latter two circuits clearly illustrate the different ways in which the power output transistor may be used to drive an external load. The first, Fig. 3A, uses an emitter resistor as the output load to drive a dc voltmeter. With the component values given, an output of 6 volts dc is developed across the 10,000-ohm emitter resistor with an input frequency of 400 Hz , representing an 8 -cylinder engine speed of 6000 rpm . The second design, Fig. 3B, employs a milliammeter as the output transistor's collector

1702A MANUAL EPROM PROGRAMMER

Features hex keypad, two digit hex address and two digit hex data display. Controls include load, clear, go! (step), key/copy, data in/ data out, and counter up/ down. Profile card includes high voltage pulse regulator,
 timing, 8 bit address and 8
bit data drivers/receivers. Two $61 / 2^{\prime \prime} \times 9^{\prime \prime}$ stacked cards with spacers. Allows programming in 20 minutes - copying in 5 minutes. Requires $+5,-9$, and +80 volts.
ASSEMBLED $\$ 299.95$
KIT . $\$ 189.95$ NOW
The best of two worlds . . . use our 1702 EPROM programmer as a manual data/address entry programmer . . . or connect it to your processor.
IMSAI/ALTAIR computer interface (requires 3 output ports, +1 input port) and software \$49.95
Briefcase unit with power supplies and interface connectors
(assembled and tested only) \$599.95
ANNOUNCING
Our NEW 16K Byte Pseudo-Static, IMSAI/ALTAIR compatible RAM. Single card slot. Uses less power than equivalent low power RAM. All memory chips socketed. Uses all prime, factory fresh ICs. High quality, two-sided, through-holeplated circuit board. Crystal controlled, totally invisible refresh system requires NO software management. Just plug it in and use like STATIC memory.
Complete kit . \$349.95
Assembled, tested and burned in
$\$ 549.95$
ASSOCIATED ELECTRONICS
12444 Lambert Circle • Garden Grove, CA 92641 (714) 539-0735

CIRCLE NO. 9 ON REE information CARO

COMING UP IN THE APRIL
Popular Electronics ${ }^{\circ}$

HOW TO DX EARTH BROADCASTS FROM OUTER SPACE SIX CMOS CIRCUIT APPLICATIONS FOR HOBBYISTS
 dIGISTART-THE ELECTRONIC COMBINATION LOCK FOR STARTING IGNITION SYSTEMS

PRODUCT TEST REPORTS:

Rotel RX-7707 Stereo FM/AM Receiver Garrard DD-75 Direct-Drive Turntable Shure 526T Base-Station CB/Ham Microphone Tennelec MCO-1 Memory Scanner

Fig. 2. Basic Tachometer (A)

load and thus represents a current-driven approach. In operation, an output current of 10 mA is developed with an input frequency of 300 Hz , representing a 6 -cylinder engine speed of 6000 rpm .

Four of the many other potential applications for the ta-chometer-speed switch are illustrated in Fig. 4, including a zener regulated frequency-to-voltage converter featuring the LM2917-8, Fig. 4A, a direct-reading capacitance meter, Fig. 4 B , a finger touch (or contact) switch, Fig. 4C, and an overspeed alarm indicator, Fig. 4D. The last three circuits all employ the LM2907-8. Using the $60-\mathrm{Hz}$ ac power line as its input test signal source, the capacitance meter, Fig. 4B, develops a dc output of 1 to 10 volts across its emitter load resistor with C_{x} values of $0.01-$ to $-0.1-\mu \mathrm{F}$ and the calibration resistor, R, set
at 111,000 ohms. A suitable high-impedance voitmeter connected across the emitter load may be calibrated directly in terms of capacitance. The touch switch circuit, Fig. 4C, uses the LM2907-8 to drive a standard J-K flip-flop. In operation, the flip-flop's Q output terminal goes "hi" and "lo" alternately each time the contact plate is touched. Depending on the intended application, the flip-flop's output may be used to operate a relay, indicator lamp, counter, or other circuitry. Finally, the overspeed indicator circuit, Fig. 4D, flashes a LED when its input frequency equals or exceeds a predetermined value. Thereafter, the flashing rate rises as the input frequency increases beyond the initial trip point. With the component values given, flashing begins with an input frequency of 100 Hz or more. This range may be changed, however, by changing

圆T-I BATTERY SAVING FEATURES WHEN INS. TRUMENT IS NOT IN USE so you can be sure that your meter will be ready the next time you need it. Push the button on the probe on the DVM35 and DVM36 and only then do you start drawing cutrent from your battery. An automatic patented circuit does the same job for you automatically when you apply voltage to the DVM32. The DVM38 is AC operated.

El 10 DAY FREE TRIAL to be sure that Sencore digitals are all that we say they are. Simply march into your Sencore distributor and ask for a free trial or pay cash with a promise of a 10 day money back guarantee, if not 100% satisfied. Or, write Sencore, and we will see that our distributor contacts you.

E 100\% MADE RIGHT LIFETIME GUARANTEE so you can be sure your meter was made right. If at any time you discover that a Sencore DVM was not made right, Sencore will make it right, parts and labor free of charge, for the lifetime of the product.

Plus other "make sure" features such as . direct reading with no paralax error - no effect from magnetic fields such as motors \& RF fields - lab accuracy with high resolution - auto-polarity auto-zeroing and auto-ranging on the DVM38 and you can see why you can be sure more times, in more circuits, than with any other multimeter on the market today - and for less money than old fashioned analog meters.
the value of the charge pump capacitor (indicated as 0.033 microfarads).

Reader's Circuits. Our correspondent in Florida, Ted Reiter (1442 Brook Drive, Titusville, FL 32780), is back again this month with more of his interesting circuits. Feeling that many of his fellow experimenters might require time sequencing circuits for their projects, Ted suggests the designs given in Fig. 5 as simple solutions for problems which might otherwise require relatively complex circuits or expensive components. An "active low" sequencer circuit is shown in Fig. 5A, an "active high" in Fig. 5B. Both require only a 555 timer, a SN7495N 4bit shift register, and a minimum of additional components. Both are designed to operate on a standard 5 -volt dc power supply. Finally, both are not overly critical as far as parts placement and wiring dress are concerned and, therefore, may be duplicated with any preferred construction technique from solderless breadboarding to pc board assembly.

Referring to the active low sequencer circuit, Fig. 5A, the 555 is wired as a pulse generator or "clock," with its pulse rate (frequency) adjustable by means of a 1 -megohm potentiometer. In operation, the shift register outputs at pins 13 (A), 12 (B), 11 (C), and 10 (D) are high initially. When normally closed switch S1 connected to mode input pin 6 is opened momentarily, the next negative-going clock edge switches pin 13 (A) to low. Each following negative edge then moves the low one position to the left from A to D. In logic symbols, using "1" for high and " 0 " for low, the sequence is as follows:

Originally:
Initiate:

$$
\begin{aligned}
& \text { D-C-B-A } \\
& 1-1-1-1 \\
& 1-1-1-0
\end{aligned}
$$

1-1-0-1
1-0-1-1
0-1-1-1
Recycle:
1-1-1-0
1-1-0-1
and so on, recycling as long as power is supplied and the clock is on. Using the same clock circuit, the active high sequencer operates in similar fashion, except that the shift register outputs are low (logic 0) initially and a high (logic 1) is sequenced from A to D after the initiate button is pressed. The clock frequency, of course, establishes the cycling rate.

Although the sequencer outputs are shown in logical order, they can be used to operate external circuitry or devices in any order desired, provided the user remembers that the " A " output is active (high or low) before " B," " B " is active next before "C," and so on.

Sequencer applications are limited only by the imagination and skill of the circuit designer and by the types of peripheral circuitry or external devices controlled. Ted suggests, for example, that a sequencer could be used to cycle several lights on and off for unusual displays, for sequencing several slide projectors for special color-slide presentations, for cycling a CB transceiver through several channels, or for sequencing several audio tones in an electronic "doorbell," as indicated in Fig. 6. Other possible applications include the familiar turn indicator for autos (or bikes), for "bouncing" sound around a room by switching loudspeakers on and off sequentially, or for sequencing test operations in a laboratory. Generally, some type of interface device, such as a relay, power transistor, or SCR will be required between the sequencer output and the controlled device (lamp, loudspeaker, alarm bell, motor, or

Should your

 career in electronics
go

 beyond TV repair?
CREI prepares you at home for broader and more advanced

 opportunities in electronicsplus offers you special arrangements for engineering degreesThere is no doubt television repair can be an interesting and profitable career field. TV repair, however, is only one of the many career areas in the fast growing field of electronics.
As an indication of how career areas compare, the consumer area of electronics (of which TV is a part) makes up less than one-fourth of all electronic equipment manufactured today. Nearly twice as much equipment is manufactured for the communications and industrial fields. Still another area larger than consumer electronics is the government area. That is the uses of electronics in such areas as research and development, the space program, and others.
Just as television is only one part of the consumer field, these other fields of electronics are made up of many career areas. For example, there are computer electronics, microwave and satellite communications, cable television, even the broadcast systems that bring programs to home television sets.
As you may realize, career opportunities in these other areas of electronics are mostly for advanced technical personnel. To qualify for these higher level positions, you need college-level training in electronics. Of course, while it takes extra preparation to qualify for these career areas, the rewards are greater both in the interesting nature of the work and in higher pay. Furthermore, there is a growing demand for personnel in these areas.
Unlike most other home study schools, CREI programs are devoted exclusively to preparing you for careers in advanced electronics. All of CREI programs are college level. And CREI gives you both theory and practical experience in advanced electronics.

Unique Design Lab

A unique feature of CREI training is its Electronic Design Laboratory Program, which trains you to actually design circuits. It also helps you understand the theories of advanced electronics and gives you extensive practical experience in such areas as tests and measurements, breadboarding, prototype construction, circuit operation and behavior, characteristics of electronic components and how to apply integrated circuits.

Career Training at Home

Only CREI offers this unique Lab Program. It is a complete college lab and, we believe, better than you will find in most colleges. The "Lab" is one of the factors that makes CREI training interesting and effective. And the professional equipment in this program becomes yours to keep and use throughout your professional career after you complete the training.

Engineering Degree

CREI offers you special arrangements for earning credit for engineering degrees at certain colleges and universities as part of your home study training program. An important advantage in these arrangements is that you can continue your full time job while "going to college" with CREI. This also means you can apply your CRE1 training in your work and get practical experience to qualify for career advancement.

Wide Choice of Programs

CREI gives you a choice of specialization in 14 areas of electronics. You can select exactly the area of electronics best for your career field. You can specialize in such areas as computer electronics, communications engineering, microwave, CATV, television (broadcast) engineering and many other areas of modern electronics.

FREE Book

In the brief space here, there isn't room to give you all of the facts about CREI college-level, home study programs in electronics. So we invite you to send for our free catalog (if you are qualified to take a CREI program). The catalog has over 80 , fully illustrated pages describing your opportunities in advanced electronics and the details of CREI home study programs.

Qualifications

You may be eligible to take a CREI col-lege-level program in electronics if you are a high school graduate (or the true equivalent) and have previous training or experience in electronics. Program arrangements are available depending upon whether you have extensive or minimum experience in electronics.

Mail card or write describing qualifications to

BRECAPITOL RADIO ENGINEERING INSTITUTE

GI Bill

CREI programs are approved for training of veterans and servicemen under the G.I. Bill.

McGraw-Hill Continuing Education Center 3939 Wisconsin Avenue Northwest Washington, D.C. 20016
Accredited Member National Home Study Council

Fig. 3. Automotive tachometer circuits: (A) voltage-driven for 8-cylinder cars; (B) currentdriven for 6 -cylinder cars.
other unit) if moderate to high power levels are involved, with the interface and controlled devices requiring a separate power source.

Device/Product News. If you're working with r-f circuits, either professionally or as a ham, you may want to investigate a pair of solid-state vhf and hf amplifier modules recently introduced by the Amperex Electronic Corporation (Hicksville, NY 11802). Containing internal matching networks for broadband applications, each module will deliver better than 18 watts with a drive power of less than 150 mW when operated on a dc supply of 12.5 volts. The BGY32 is designed for operation at 68 to 88 MHz , the BGY36 from 148 to 174 MHz . Their input and output impedances are matched to 50 ohms with no instability at VSWR's of up to 3:1 at all phase angles, but neither will be damaged with VSWR's of up to 50:1 through all phase angles at heat sink temperatures as high as $70^{\circ} \mathrm{C}$.

In addition to the new r-f amplifier modules, Amperex has announced a new full-wave silicon bridge rectifier designed specifically for use in semiconductor equipment. Designated type BY225-200, the rectifier has a maximum rms input rating of 80 volts and can supply an average output current of 4.2 A . Suitable for use at frequencies up to 400 Hz , the rectifier consists of four double-diffused diode crystals on a copper comb encapsulated in plastic. Capable of delivering up to 3 A without a heat sink, the device can be used in power supplies for musical instruments, audio amplifiers, boat equipment, burglar and fire alarms, battery chargers, microprocessors, and other equipment requiring up to 90 W output.

The Fairchild Camera and Instrument Corp. (Analog Products Division, 464 Ellis St., Mountain View, CA 94042) is producing a hybrid voltage regulator capable of providing 5 A of regulated power at 5 volts with built-in short circuit and safe area protection. The voltage regulator, type 78 H 05 KC , limits the maximum junction temperature of the power output transistor to provide full automatic thermal overload protection. If the safe operating area is ever exceeded, the device simply shuts down rather than failing or damaging other system components. The device is supplied in a standard TO-3 package.

Teledyne Semiconductor (1300 Terra Bella Ave., Mountain View, CA 94042) has added two new up-down (reversible) counters to its growing family of high-noise immunity logic devices. The HiNIL 373 (decade) and 374 (hexadecimal) counters feature master-slave flip-flops with active outputs triggered by a low-to-high level transition of either of two clock in-

puts while the other is high. Pulsing one clock input causes the device to count up; pulsing the other causes it to count down. Other features include the high noise immunity- 3.5 V minimum, carry and borrow outputs for N -bit cascading, clear input independent of count and load, individual preset for each flip-flop, and synchronous operation. Furnished in standard 16-pin plastic and ceramic DIP's, the HiNIL 373 and 374 counters are suitable for critical control, medical instrumentation and marine electronic applications.

Motorola Semiconductor Products, Inc. (P. O. Box 20294, Phoenix, AZ 85036) has added four new npn power Darlingtons to its expanding line of "Switchmode" products. Designated types MJ10004, MJ10005, MJ10006 and MJ10007, the units are designed specifically for fast switching applications where high voltage, high current and high gain are required. Maximum currents are 40 A for the MJ10006 and MJ10007, both of which offer a minimum $h_{\text {FE }}$ of 40 (@ IC of 2.5 A), and 50 A for the MF10004 and MJ10005, which offer a minimum $\mathrm{h}_{\text {FE }}$ of 50 (@ I C of 5 A). The devices feature typical fall and storage times of 100 ns and 850 ns , respectively, for the MJ10004/5 and 90 ns and 780 ns , respectively, for the MJ10006/7, when switching an inductive load of $180 \mu \mathrm{H}$ with the devices clamped at their rated $\mathrm{V}_{\text {CEX }}$ (sus) and at case temperatures of $100^{\circ} \mathrm{C}$. The minimum $\mathrm{V}_{\mathrm{CEX}}(\mathrm{sus})$ at a case temperature of $100^{\circ} \mathrm{C}$ is 400 volts for the MJ10004/6 and 450 volts for the MJ10005/7.

Finally, RCA's Solid State Division (Box 3200, Somerville, NJ 08876) has added three new sensitive-gate SCR series, S106, S107, and S108, to its line of silicon-controlled-rectifiers. The new SCR's have an rms on-state current rating of 4

Fig. 4. Additional tachometer-speed switch applications circuits: (A) frequency-tovoltage converter; (B) capacitance meter; (C) finger-touch circuit; (D) overspeed monitor and indicator alarm.

Fig. 5. Reader's sequencer circuits:
(A) active low; (B) active high.

A. Each series includes nine types with voltage ratings of 15 , $30,50,100,200,300,400,500$, and 600 V , and all utilize the standard JEDEC TO-202AB package. The new series of devices is intended for lighting, power-switching, motor-speed controls and for gate-current amplification for driving larger SCR's, while the gate-current characteristics of the S108 series makes it ideal for low-level logic circuit applications.

Fig. 6. Possible application of sequencer to an electronic "doorbell."

Regular newsstand price is $\$ 1.95$; mail order \$2.50.
So to make sure you come through "Loud and Clear" in 1977 ...
RESERVE YOUR COPY NOW AND SAVE WITH THIS SPECIAL PRE-PUBLICATION OFFER AVAILABLE TO READERS OF POPULAR ELECTRONICS MAGAZINE ONLY.

PRE-PUBLICATION

 RESERVATION FORMCommunications Handbook PE-377,
Consumer Service Division
595 Broadway, New York, N. Y, 10012
Enclosed is $\$ 1.50$. Please reserve my copy of the 1977 Communications Handbook to be mailed to me when published. (Residents of Cal., Col., Fla., III., Mich., Mo., N.Y. State, D.C. and Tex. add applicable sales tax.) OUTSIDE U.S.A. \$2.
Print Name
Address
City
State
\qquad

State Zip

Experimenter's Corner

By Forrest M. Mims

FLIP-FLOPS AND DECADE COUNTERS-PART 2

TVE HAVE previously seen (February 1976) how a clocked flip-flop can be used as a binary counter. We built a two-bit binary counter from both halves of a 7473 dual JK flip-flóp. And we assembled a limited range (0-9) fourbit counter from a 7490 decade counter, a medium-scale integrated circuit (MSI) which incorporates four flip-flops on a single chip.

Now, let's see how to add an additional chip or two to the 7490 to make it a more versatile counter. We'll also examine several ways to convert the 7490 into a divide-by-n counter.

Binary-Coded Decimal. Four clocked flip-flops have the potential of counting from 0000 to 1111 in binary (or 0 to 15 in decimal). The 7490, however, is internally connected to automatically reset to 0000 when the count exceeds 1001 (9). This feature gives the decade counter its name and makes it ideal for converting binary information into a decimal format.

A pure binary counter is very easy to

Fig. 2. Converting 4-bit BCD output of 7490 to decimal.
build, but our decimal-trained minds would have considerable difficulty relating to it. It's not too hard to learn the binary equivalents of $0-9$, but how about the binary equivalent of a number like 215? The binary number in this case requires 8 bits and is a very cumbersome

Fig. 1. How to connect two or more 7490 counters in series.

Fortunately, there's an easier way to work with binary numbers. It's called bi-nary-coded decimal or BCD for short. The four-bit outputs of individual 7490's can form a binary-coded decimal number. The elegance of BCD is its simplicity. Since each counter stage represents one decimal digit position, only the binary equivalents for the digits 0-9 need be learned to interpret the pattern of glowing LED's connected to each 7490. For example, assuming a dark LED is 0 and a glowing LED is 1,215 would be represented in BCD as 00100001 0101, instead of 11010111 in pure binary.
It's not even necessary to memorize any binary numbers to read a BCD LED display since you can use a simple trick to convert any binary number to its decimal equivalent. Here's how it works: The positions of bits in a binary number represent ascending powers of two (just as the positions of digits in a decimal number represent ascending powers of ten). For example, the decimal values for each position in a four-bit binary number

Fig. 3. How to connect a latch
between a 7490 counter and a 7447 decoder.
are: $\quad 2^{3}-2^{2}-2^{1}-2^{0}$ or simply $8-4-2-1$. This means that by ignoring the 0 bits and adding the powers of two at the positions with a 1 bit you can quickly arrive at the decimal equivalent for a binary number. For example, 1001 is $9(8+0+0+1)$, and 0111 is 7 $(0+4+2+1)$.

The 7490 Decade Counter. A look at the pin diagram of the 7490 shows its four output pins are given the conventional BCD designation DCBA. The pin diagram doesn't reveal a carry pin so it would seem the 7490 cannot be used for multiple digit applications. Fortunately, however, it's possible to use the D output as a carry pin. All that's required is to connect pin 11 of the 7490 in the first
counter stage to the A input of the 7490 in the second stage (pin 14) as shown in Fig. 1. This neat solution to the absence of a carry pin works since the 7490 in the second stage triggers when the count from the first 7490 recycles from 1001 (9) to 0000. Also, it can be applied to a succession of counter stages.

Several counter stages can be used to make an eight-, twelve-, sixteen-, or more bit BCD counter. Each counter's four-bit row of LED's would represent a single BCD digit. But though this arrangement is very economical, it's not as convenient as a digital output.

The 7447 7-Segment Decoder. One way to convert the four-bit BCD output of a 7490 into a decimal format is to use a diode matrix read-only memory (ROM) programmed to light one of ten LED's labeled 0-9. A more convenient approach is to use a ROM or array of gates connected to light the appropriate segments of a segmented 0-9 digital display. There are several chips which will do this for you.

Figure 2 shows how to connect the 7447 BCD to 7 -segment decoder/driver between a 7490 decade counter and a common-anode segmented LED dis-

When you're miles from help, you need a CB antenna that reaches for miles and miles. It could be your only link to safety. So saving a couple of dollars on a cut-rate brand could cost you.

But the price of an A/S antenna is worth the extra you might pay-just for the peace of mind. Every single A/S antenna is hand-tuned and tested for 23 - and 40-channels. That's the kind of care and quality control that makes A/S the choice of

play. The 7447 includes several useful features. Grounding the lamp test input (pin 3) will light all seven segments of the display. Grounding the ripple blanking input (RBI; pin 5) will blank the display if a 0 is being displayed. And grounding the ripple blanking output (RBO; pin 4) will blank the readout no matter what digit is being displayed.

The $\mathbf{7 4 7 5}$ Four-Bit Latch. The mul-ti-digit counter circuit in Fig. 1 is adequate for counting a series of events or the passing of time up to the maximum digit capability. Many counting applications, however, require the measurement of frequency (the count rate per unit time). For example, a frequency counter counts the number of incoming pulses during a preset time interval (say, 1 second), then recycles and begins counting again. In cases like this the 7490 is always busy counting and all seven display segments will blur into a meaningless " 8 " if the count exceeds several pulses per second.

The simplest way around this problem is to connect a temporary memory between the 7490 counter and the 7447 decoder. The ubiquitous flip-flop comes to our rescue again, this time in the form of a four-bit data register called the 7475

Fig. 4. How to use the 7490 as a divide-by-n counter.
quad-latch. This handy chip contains four flip-flops and interfaces between the counter and display circuitry as shown in Fig. 3
The 7475 accepts BCD data and passes it to the display when its clock inputs (pins 4 and 13) are high (ungrounded). When the clock inputs are grounded, the 7475 stores whatever data was last present at its inputs and the display is activated accordingly.

7490 Divide-by-n Circuits. So far, we've covered the most important decade counter applications for the 7490 . By now, in fact, you should be able to trace your way through much of the circuit diagram of a professional frequency counter! The 7490 has a number of divider applications also, and Fig. 4 shows how to connect it to achieve division.
The divide-by-2, 5 , and 10 circuits are made possible by the internal arrangement of the 7490 as a single flip-flop and three interconnected flip-flops. The di-vide-by-3 and -6 circuits are made possible by connections between the BCD outputs and the appropriate reset inputs of the 7490 which automatically reset the counter to 0000 when the desired count is reached. The result is one pulse out for every n pulses in.

STOP BURGLARS! with

 "SONAGUARD"
Abstract

The SONAGUARD PORTABLE INTRUSION ALARM A fully-portable, self contained unit that keeps burglars away. The SONAGUARD sets up an audible sound pattern that covers over 10,000 feet. Any thief who tries to get into your place and breaks that pattern will find that the SONAGUARD blasts out an audible pitch that stops any burglar instantly from doing what he set out to do.

For Further Information, call or write: MOTOR HOME.

By John McVeigh

RECEIVING SSB

Q. I have a Heathkit SW-717 shortwave receiver that works very well, but I can't copy most ham voice stations. They all sound garbled. I was told that this is normal as they are using single sideband transmitters. Is there a circuit / can build that will enable me to understand what they're saying?-Harry Muller, Elkins Park, PA.
A. What you need is a beat frequency oscillator or bfo to re-insert the suppressed carrier of the SSB signals. The circuit shown will work with your receiver. Its output signal can be introduced at either the $455-\mathrm{kHz}$ i-f strip or at the diode detector. In some cases, merely con-

necting a length of hookup wire to the output and positioning it close to the i-f circuitry will provide enough coupling. Otherwise, you can connect the other end of the wire to the anode of the detector. Adjust the 10,000 -ohm potentiometer for maximum output and the 20,000-ohm potentiometer for greatest intelligibility. By the way, you will also be able to use this bfo for hearing Morse code signals.

FAST AND SLOW SCAN TV

Q. I recently read in an article covering the Viking mission that TV transmissions are being sent on the 20 meter band. As I understand it, the
picture is converted into a $3000-\mathrm{Hz}$ tone and sent by "radio." Is it possible to convert these tones back into video and feed it to my TV receiver? Incidently, the call of the station sending the pictures is N6V. -Craig Keithley, Northridge, CA.
A. The article was referring to slow-scan television, as opposed to the conventional fast-scan system broadcasters use. The great advantage of slow-scan is that it requires no more spectrum space ("bandwidth") to send a picture than is needed for a voice signal-about 3000 Hz . However, the bandwidth of a communications channel has a direct influence on the maximum rate at which data can be sent over the channel. Because slow scan is a narrow bandwidth system, it takes much longer to send a picture over it than a fast scan link. The actual figures are about 8 seconds for a slow-scan picture as compared with $1 / 30$ th of a second for fast scan-but fast scan requires about 4 MHz (!) of spectrum space. If I recall correctly, the Viking project uses a slow-scan technique for sending back pictures, requiring about 30 minutes for the entire image to be transmitted.

The N6V station is a special events Amateur Radio station operating from the Jet Propulsion Laboratory in Pasadena. Although I did work it on 20meter SSB (voice), I was not monitoring the station when they were sending slow-scan images of the "marscapes" received from Viking. Slow-scan pictures can not be applied directly to a TV set. They must be processed by a "scan converter"-a complex circuit that changes them to fast-scan signals. Scan converters are very expensive, and slow-scan images do not have the high resolution that fast-scan ones have. However, such books as The Radio Amateur's Handbook and Specialized Communications Techniques for the Radio Amateur (both published by the ARRL, 225 Main Street, Newington, CT 06111) contain plans for SSTV monitors and adapters for use with oscilloscopes.

PASSIVE MIXER
Q. I would like to play a stereo tape deck through a monaural amplifier. Is there a network that will combine both channels? John Riley, Burbank, CA.
A. The circuit shown will combine the stereo input and provide a balanced monaural output. This passive mixer includes an attenuation control which determines the amount of signal that will be passed to the power amplifier. You

can set the playback level controls on the deck fairly high and cut back to the desired level by adjusting the 50,000 ohm potentiometer.

RANGE OF CB HANDHELDS

Q. I recently purchased a pair of CB handhelds which supposedly have an r-f power output of four watts. So far, I haven't been able to communicate with them over a range greater than three miles or so. Is there any way I can increase their range with boosters, or whatever?-Bruce Leavenworth, New Preston, CT.
A. First of all, "boosters" such as linear amplifiers are strictly prohibited. Penalties for use are severe, and the FCC is interpreting "possession" as implying "use." Therefore, I strongly discourage your thoughts along those lines. But I don't think that a 3-mile maximum is unreasonable. That figure is typical for many mobile installations, and even though mobile antennas are not very efficient, I think they perform better than the telescoping whips of handhelds. If your transceivers have external antenna jacks, try using a more efficient base or marine-type antenna. That's the only recommendation for increasing range that I can make.

[^3]
Product Test Reports

OK MODEL WSU-30 WIRE-WRAP TOOL

Manual Wire-Wrapping tool for solderless breadboarding.

Experimenters and hobbyists, and even many engineers, generally reach for soldering iron and hookup wire when it comes to assembling a circuit. The more ambitious people lay out a printed circuit board, make the board, and then wire it in the conventional manner-still having to use a soldering iron. Recently, Wire Wrap has become a popular wiring medium, especially where hundreds and thousands of connections must be made in very complex projects.

Though Wire Wrapping is not new to the electronics industry, it has been relatively rare among hobbyists. Now, a battery of new and inexpensive tools is coming on the market. One such tool is the Model WSU-30 at $\$ 5.95$ from OK Machine \& Tool Corp.

The Model WSU-30 Wire Wrap tool features all-metal construction. Measuring $41 / 2^{\prime \prime}(11.4-\mathrm{cm})$ long, it weighs a mere 0.5 ounce (15.5 g). The tool serves three functions. First, it has a built-in stripper for removal of the special Kynar insulation used on Wire Wrap wire. Second, it is a manual Wire Wrapper. Finally, it is a wire unwrapper.

General Details. The use of a Wire Wrap tool, such as the Model WSU-30, carries with it several advantages that make it attractive to the engineer, experimenter, and hobbyist. Since it is a solderless wiring medium, it eliminates the need for a soldering iron and, thus, the possibility of heat damage to components. While it is essentially a point-topoint wiring medium, Wire Wrapping allows you to make connections with a rapidity that cannot be matched by crimp-and-solder joints. Furthermore, errors in wiring can be corrected and circuit modifications can be made in seconds. In sum, Wire Wrapping is much faster than traditional methods of wiring circuits, including pc board construction, which is not only messy to make but also extremely difficult to modify.

The use of the Model WSU-30 Wire Wrap tool is very simple. You start by inserting the unprepared end of the wire in a V-shaped slot in the body of the tool, press down slightly on the wire to score the insulation, and then draw out the wire. The insulation parts neatly, leaving a bare-wire end. Next, you feed the bare

Strip.
wire into a small hole in the wrap end of the tool, place the tool over a Wire-Wrap pin on either a socket or component pin, and rotate the tool clockwise. As the tool is rotated, the bare end of the wire wraps tightly around the pin. The recommended number of turns for an optimum joint is seven turns.

Wire-Wrapped joints have high electrical and mechanical integrity because the relatively sharp corners on the wrap pins "bite" into the wire as it is wound around them under tension. Wire Wrap connections have been known to maintain their mechanical and electrical integrity for as many as 40 years. And tests reveal that the typical Wire Wrap joint has a contact resistance of less than 1 milliohm.

To unwrap a connection, you simply invert the tool, slip it over the wrap pin, and rotate the tool counterclockwise. The wire comes away from the post neatly and easily.

User Comment. We tested the Model WSU-30 Wire Wrap tool by assembling several circuits, one of which was a complex computer board. After making a few trial wraps to become familiar with the operation of the tool, the wiring went very quickly and easily. We found that, with a little practice we were making connections, including stripping away of insulation, at a rate of about one every 10 seconds.

We also had a practical opportunity to test the unwrapping feature of the tool. After our computer board was completely wired, we had to make a modification that involved about three dozen conductors. Again, the job went quickly and rapidly.

Comparing this new low-cost tool with an expensive motorized Wire Wrap tool, we determined that both produced the same high-quality, high-reliability connections, although we must admit that the mechanized tool had the edge when it came to speed. But the low cost of the Model WSU-30 had a big edge in the price category.

You can buy the Model WSU-30 Wire Wrap tool only, but it is a good idea to pick it up in the prepackaged kit form, which also contains a 50^{\prime} (15.2-m) spool and stripped $1^{\prime \prime}$ to $6^{\prime \prime}$ (2.54- to $15.2-\mathrm{cm}$) lengths of Kynar insulated wire for $\$ 11.95$. Spools containing 50^{\prime} of wire are also available separately for $\$ 1.95$ per spool. The standard wire used with the Model WSU-30 Wire Wrap tool is AWG 30 silver-plated, Kynar insulated interconnection wire.

BALLANTINE MODEL $1010 A$ OSCILLOSCOPE

Moderately priced, dual-trace, trigger-sweep, $10-\mathrm{MHz}$-bandwidth scope.

To properly and efficiently perform design, troubleshooting, and maintenance of modern electronic circuits, you need a full-featured oscilloscope. It should have a relatively wide bandwidth, dc coupling throughout, triggered sweep, and a frequency and interval counter that is not sensitive to waveform shape. More than one input channel will make such a scope all the more versatile. The Ballantine Model 1010A oscilloscope fills the bill for most modern electronics work.
The Model 1010A scope features a $5^{\prime \prime}$ (12.7-cm) flat-screen CRT; two fully independent input channels that operate on either the alternate or chop mode to provide two traces from the single beam; dc-to-10-MHz bandwidth (at the 3-dBdown points); and triggered sweep.

The scope measures $165 / 8^{\prime \prime} \mathrm{D} \times 11$ $3 / 8^{\prime \prime} \mathrm{W} \times 7^{\prime \prime} \mathrm{H}(42.2 \times 29 \times 17.8 \mathrm{~cm})$ and weighs $15 \mathrm{lb}(7 \mathrm{~kg}) . \$ 595.00$. A number of options are available, including the No. 10600 probe kit for $\$ 35$, No. 10850B $r-f$ detector probe to allow the scope to be used out to 700 Mhz for $\$ 85$, a vinyl carrying case, and front-panel cover.

General Description. The two identical vertical input channels have a deflection factor of from 20 mV to 20 volts/ cm . The deflection factor desired is selectable by a front-panel switch that has 12 calibrated positions. The direct-coupled bandwidth is stated to be at least dc to 10 MHz at -3 dB , while on ac coupling, the lower-frequency $3-\mathrm{dB}$-down point is at approximately 5 Hz . The input impedance, identical for both channels, is 1 megohm paralleled by 28 pF . Both inputs are protected up to 400 volts dc or peak ac.

The triggered-sweep section has a range of from $1 \mu \mathrm{~s}$ to 0.5 second/cm in 18 switch-selectable ranges. The accuracy here is stated to be within 5%. A $\times 10$ magnifier, available at the flip of a front-panel switch, makes the fastest sweep $100 \mathrm{~ns} / \mathrm{cm}$. The sweep circuit also features a vernier control that is continuously variable between timebase steps. It extends the sweep to 1.25 seconds/cm. The sweep can be triggered either automatically or manually from either channel's signal or from an external source. The three trigger coupling modes provided are AC, ACF (ac fast with low-frequency rejection), and TVF (TV frame rate).

Each of the two vertical channels can be selected for single-trace display only. Setting the scope to the dual-channel mode allows both traces to appear on the CRT screen simultaneously, with the alternate or chop mode automatically selected by the choice of sweep speeds.

In addition to intensity (Z-axis) external modulation, the scope also features a 1 -volt $\pm 2 \%$ square-wave output, available at a jack on the front panel, that can be fed back into the scope for calibration purposes. This output signal's frequency is the same as the line-power frequency. There is also a sweep-synced ramp output, available from a separate frontpanel jack, that goes from 0 to 10 volts.

The input to the power transformer can be selected to allow operation from 95 to 260 volts ac, with line frequencies ranging from 45 to 400 Hz .

User Report. Using an oscilloscope like the Model 1010A is pure pleasure. Aside from the fact that it is a really versatile instrument, this scope is light
enough in weight to carry from one job to another without tearing your arm from its socket. It is also quite rugged, capable of withstanding mechanical shocks that might ordinarily knock other scopes out of calibration. A couple of weeks of lugging it around in a field-service van confirmed this point admirably. Needless to say, the Model 1010A is as good as a field-service performer as it is on a fixed rack (it is available in rack mount) and bench.

Ballantine has not sacrificed creature comforts in keeping the price down. For example, all front-panel control knobs are large and have flutes for easy grip and manipulation. They operate smoothly and positively. And the knobs have full-length white index marks that, in addition to the large and easy-to-see panel legends, make settings easier to see and interpret than is usually the case. The flat-faced CRT has a P31 blue phosphor that is easy on the eyes, and its $8 \times 10-\mathrm{cm}$ graticule is clean and bold.

Another nice feature is the carrying handle. It has a locking mechanism that can be set for carrying the instrument from one job to another or adjusted to serve as a tilt stand on a service bench. The heavy-duty aluminum handle has a plastic grip with molded finger ridges. This grip also serves as an anti-skid "foot" when the handle is used as a tilt stand. When the optional molded faceplate cover is in place and the handle is hinged up, the two lock together. On the test bench, we discovered that this scope could resolve nanosecond trigger waveforms that we presumed were beyond the limits of the instrument. Even at these extreme limits, the sync held rock steady, and the trace was quite "readable" at the very high writing speeds used. A hallmark of this scope is clearly its bright, sharp trace at high speeds. Performing calibration tests, we also determined that the scope operated well within its published specifications. After stints on a service bench and in the field, where we made no particular efforts to treat it with any special care, we again subjected the scope to calibration tests. There was no detectable difference in any area we tested.

Considering the versatility, performance, and portability of this generalpurpose oscilloscope, we feel it is an especially fine value for the bench and for the field-service technician and serious experimenter/hobbyist. One can easily get less scope for the money than the Ballantine Model 1010A. Equivalent specifications don't tell the whole story.

CIRCLE NO. 83 on free information caro

By Glenn Hauser

THE SOVIET PULSER

PULSES at the rate of ten per second have been disrupting shortwave communications since the middle of last year. These clicks follow no particular frequency schedule, but they often fall within shortwave broadcast bands. Having one channel at a time disrupted this way would not be so bad, but a single transmitter of this type may spread over a $300-\mathrm{kHz}$ range, messing up an entire band at once. And some monitoring stations have reported three different pulse transmitters operating simultaneously.

Several press reports on this have been widely syndicated. They result from complaints the FCC has been receiving from amateur operators, point-to-point and maritime communications

This is a Speakerlab 7, a 4. element acoustic suspension speaker kit you can assemble yourself in an hour with simple tools.

It saves you up to 50% over comparable ready made systems. Read about the $S 7$ and other systems and raw speakers we sell in a new 40 page catalog. It's a factpacked manual with chapters on acoustic theory, enclosures, choosing drivers and design principles.

And it's free. Just write us and ask for the most complete catalog/manual ever written on speaker building.
services using hf. It seems that the FCC has heard relatively little from shortwave listeners, who are less able to identify and combat this interference than "professional" users of the hf bands. In fact, reading the reports, one would never know that the pulsers cause havoc in international broadcasting.

FCC and equivalent administrations in other friendly countries have pinpointed the signals as coming from either "the Baltic area," or somewhere near Minsk in the Byelorussian SSR. As a result, numerous official protests have been filed with Soviet authorities.

In December, the USSR finally said it would try to reduce the disturbances in response to the complaints.

The purpose of the pulses has been a matter of wide speculation. Jim Vastenhoud of Radio Nederland likens them to ionospheric sounders for scientific research. Larry Magne of IBA observes that they seem to "ride the MUF," which means they operate at whatever frequency is the highest that will propagate at any given moment. Bob Thomann of the Swiss shortwave service thinks they carry intelligence, using "shotgun communication" so that, if one frequency is blocked, another will get through. But other observers find no evidence of intelligence in the transmissions.

David Mackes, a radar authority in Baltimore, is certain that we have been witnessing a new kind of long-distance radar which is called over-the-horizon backscatter.

Conventional radar uses more rapid pulses at super-high frequencies, which has the advantage of relatively high resolution, being able to track swiftly-moving objects. But the disadvantage is its limited range.

Mackes says a wideband pulse is transmitted, but is compressed in the receiver, making the pulse seem much greater in amplitude. He thinks linear FM is the modulation method; that is, the signal is most likely being chirped. Further studies of the pulses on a spectrum analyzer should give the answer.

Strong broadcast signals are capable of overriding the pulser, but it pops in between channels, making reception of weaker stations impossible. If you hear it on a single frequency, it's probably being relayed inadvertently, such as from BBC-Antigua or Radio NederlandBonaire.

Some authorities believe the 10 -per second rate is far too slow to detect aircraft, even though it can reach beyond the horizon. This leaves shipping in the North Atlantic as the most likely targetcertainly beyond the range of conventional radar based in the USSR. Other engineers think the Doppler effect is used, with performance good enough for tracking aircraft, according to Mackes. He also observed one pulse transmission centered on 6050 kHz , with $50-\mathrm{kHz}$ bandwidth, followed by a CW station on the center frequency. We have noted the pulser at various times centered on $5.980,7.635,9.150,9.600$ and 11.715 MHz . Reception correlates well with that of Radio Moscow transmissions from the same geographical area.

Communications technicians in the Canadian north suspect the pulses had defense implications, as did Italian authorities last summer when the pulses first appeared, coinciding with NATO exercises.

More Change in the Air. Continuing our discussion of band reallocation, which began in the November 1976 DX Listening column, the present sharing of the $3-$ and $7-\mathrm{MHz}$ bands between amateur radio and broadcasting has proven to be a terrible nuisance to broadcasters, hams, and listeners alike. There is no reason why this should continue beyond 1979. It is proposed that the hams give up the $3900-4000-\mathrm{kHz}$ portion of 80 meters, while broadcasting gives up the $7100-7300-\mathrm{kHz}$ portion of 40 meters. Of course, the amateur radio lobby has launched its own campaign for expanded and additional bands. There should be enough formerly IFPS spectrum for both broadcasting and amateur radio to have expanded, additional, and exclusive bands. An ARRL representative has been observing the IBSG meetings.

Mediumwave Band. The Mediumwave (or mf) band has already been reallocated outside the Americas, with an effective date in the fall of 1978. All European channels will move $1-\mathrm{kHz}$ higher, which will result in a different selection of DX possibilities for American listeners. Even more radical is the adop-
tion of Eurafrica's $9-\mathrm{kHz}$ spacing, instead of 10, in Asia and the Pacific. Though American DX listeners have had to tune for these areas on the same channels as domestic stations, the shift will open up many "splits," allowing propagation and receiver selectivity to determine DX success, rather than domestic interference!

The IBSG has also considered changing the present $5-\mathrm{kHz}$ spacing in the hf bands to 7.5 kHz . This might appear to be a loss, rather than a gain, but the argument is this: when combined with wider bands, the increased spacing would mean a net gain of usable channels. Every channel could be used effectively to the same area at the same time. Now, a channel 5 kHz away from a powerhouse on either side is best skipped, though some stations have to use such channels for lack of anything better. For example, strong stations on 11,720 and 11,730 would make 11,725 useless. If the strong ones were on 11,715 and 11,730 instead, the $11,722.5-\mathrm{kHz}$ channel in the middle could also be used; and there would be no stations on 11,720 or 11,725.

Compatible single sideband would
help make this work, replacing the present double sideband (AM). In CSSB, the carrier remains, though it may be slightly reduced. But there is only one sideband. This means a "narrower" signal, still conveying the essential audio that is now needlessly duplicated on the other sideband. The remaining carrier makes it compatible-that is, receivable-on ordinary tuners, unlike amateur SSB which suppresses the carrier.

CSSB adoption would also make stereo broadcasting possible on hf by reinstating the other sideband, but with right and left channel, rather than identical audio. This would be restricted to single-hop transmission paths as fading would ruin shortwave stereo. The technique for CSSB has been known for a long time. Stereo AM has already been tested at WFBR in Baltimore and XETRA, Tijuana. The proposal for $7.5-\mathrm{kHz}$ spacing, CSSB, and shortwave stereo comes from Arthur Thompson of WYFR.

Stereo shortwave may be a long shot, and there are no consumer receivers designed for it yet. However, two separate receivers-one tuned to the upper sideband, one to the lower-would produce the effect.

ENGLISH-LANGUAGE SHORTWAVE BROADCASTS FOR MAR. \& APR.

By Richard E. Wood

TO EASTERN NORTH AMERICA

TIME-EST	TIME-GMT	STATION	QUAL*	FREQUENCIES, MHz
6:00-6:25 a.m.	1100-1125	Tirana, Albania	F	9.48, 11.865
6:00-8:30 a.m.	1100-1330	London, England	G	5.99 (via Sackville), 6.195 (via Antiqua), 15.07
6:00-8:00 a.m.	1100-1300	Melbourne, Australia	G	9.58
6:00-9:00 a.m.	1100.1400	**VOA, Washington, USA	G	5.955, 9.73
6:05-7:25 a.m.	1105.1225	Trans-World Fiadio, Bonaire, N.A.	G	11.815
6:30-9:00 a.m.	$1130 \cdot 1400$	**Montreal, Canada (Northern Servica)	G	5.96, 9.625 (includes French, etc.)
$645-705 \mathrm{sm}$	1145-1205	**Montreal, Canada	G	9.56, 11.72
7:00-7:30 a.m.	1200-1230	Jerusalem, Israel	G	15.10; 17.815
7:00-7:55 a.m.	1200-1255	Peking, China	F	11.685
7:10.7:30 a.m.	1210-1230	**Santiago, Chile	F	9.566, 11.81, 15.15
7;157:30 amm	1215-1230	Athens, Greace	F	15.345, 17.83
		HCJB, Quito, Ecuador	G	11.745
7:30-8:00 a.m.	1230-1300	Stockholm, Sweden	G	15.305
7:30-11:30 a.m.	1230-1630	HCJB, Quito, Ecuador	G	11.745, 15.115
8:15-8:45 a.m.	1315-1345	Berne, Switzerland	G	15.14
8:30-9:00 a.m.	1330-1400	Helsinki, Finland	G	15.17
9:00-9:15 a.m.	1400-1415	**Montral, Canada	G	15.325, 17.74
9:00-9:30 a.m.	1400-1430	Oslo, Norway	G	17.80 (Sun.)
		Stockholm, Sweden	G	15.305
$\text { 9:00 a.m. } 7: 00 \mathrm{pm} .$	1400-2400	**Montreal, Canada (Northern Service)	G	9.625, 1.1.72
9:30-10:00 a.m.	1430-1500	Helsinki, Finland	G	15.11
10:00-11:00 a.m.	1500-1600	London, England	G	17.84 (via Ascension), Saț., Sun. also 9.58 (via Sackville)
10:15.10:30 a.m.	1515-1530	Athens, Greece	P	11.73, 15.345, 17.83
11:00-11:15 a.m.	1600-1615	London, England	G	9.58 (via Sackville) 17.84 (via Ascension)
11:00-11:30-a.m.	1600-1630	Osio, Norway	G	15.17 (Sun.)
11:15 a.m. $1: 30 \mathrm{p} . \mathrm{m}$.	1615-1830	London, England	G	9.58 (via Sackville)
12 noon-3:00 p.m.	1700-2000	**Kuwait, Kuwait	F	9.555, 11.845
12:04-12:56 p.m.	1704-1756	**Paris, France	G	15.155, 15.20, 15.30, 15.315, 17.72. 17.85, $17.865,21.58,21.62$

B\&K-PRECISION's new line of 10:1/ direct scope probes is designed to be compatible with most scopes available, up to 50 MHz . All are rated at $500 \mathrm{Vp}-\mathrm{p}$ B\&K-PRECISION slimbody probes range in price from $\$ 25-\$ 35$.

Available for immediate delivery at your local distributor. Write for a free copy of the latest B\&K-PRECISION catalog.

Ever since the invention of the recorded disc annoying "clicks" and "pops" caused by scratches, static and imperfections have consistently disturbed the listening pleasure of music lovers.

Now, SAE introduces the unique model 5000, an Impulse Noise Reduction System which eliminates those unwanted sounds with no adverse effect on the quality of the recorded material.
This breakthrough in electronic circuitry is so demonstrably effective that the SAE 5000 is destined to become an essential part of any sound system.

The SAE 5000 is compact and sleek, built to SAE's exacting standards, and ready to enhance the performance of any system, from the standard receiver/turntable combination, to the most sophisticated audiophile components.
SAE is proud to add the 5000 to their broad line of Components for the Connoisseur.

- - -

9:00-9:30 p.m.	0200-0230	Budapest, Hungary	G	6.00, 7.215, 9.585, 9.833, 11.91 (Exc. Sun.)
		Dsio, Norway	F	6.185 (Sun.)
		Montreal, Canada	G	6.065, 9.535
9:00-9:55 p.m.	0200-0255	Peking, China	F	11.965, 12.055, 15.06
9:00-10:00 p.m.	00-0300	Moscow, U.S.S.R.	G	$5.94,7.105,7.115,7.205,7.355$ 9.705 (alt. 9.70 via Sofia)
9:00-10:20 p.m.	0200-0320	Hilversum, Holland	G	6.165 (via Bonaire)
9:00-10:30 p.m.	0200-0330	Cairo, Egypt	G	9.475
9:10-9:30 p.m.	0210-0230	**Santiago, Chile	P	9.566, 11.81, 15.15
9:30-9:55 p.m.	0230-0255	Tirana, Albania	G	6.20.7.30
9:30-10:00 p.m.	0230-0300	Lishon, Portugal	F	6.025, 11.935
		Stockholm, Sweden	P	6.045, 9.695
10:00-10:30 p.m.	0300-0330	Budapest, Hungary	F	$6.00,7.215,9.585,9.833,11.91$
		Kiev. U.S.S.R.	G	7.15, 7.205, 7.24, 7.26, 7.40
10:00-10:35 p.m.	0300-0335	Warsaw, Poland	P	$\begin{aligned} & 6.095,6.135,7.27,9.675 \\ & 11.815,11.84,15.12 \end{aligned}$
10:00-10:55 p.m.	0300-0355	Peking, China	G	7.12,9.78 (via Tirana)
10:00-11:00 p.m.	0300.0400	Buenos Aires, Argentina	G	$9.69 \text { (Mon.-Fri.) }$
		Prague, Czechoslovakia	G	5.93, 7.345, 9.54, 9.63, 9.74
		Moscow, U.S.S.R.	G	5.94, 7.115, 7.355, 7.44
10:00.11:26 p.m.	0300-0426	*"Johannesburg, S. Africa	F	3.995, 5.98, 7.27
10:10-10:30 p.m.	0310.0330	${ }^{*}$-Santiago, Chile	F	9.566, 11.81, 15.15
10:30-10:55 p.m.	0330-0355	Tirana, Albania	G	6.20, 7.30
		Vienna, Austria	P	6.155,9.77
10:30-11:30 p.m.	0330-0430	London, England	G	5.975, 9.58 (via Ascension)
10:30-11:50 p.m.	0330-0450	Havana, Cuba	G	11.725, 11.76, 11.93
11:00-11:15 p.m.	0400-0415	Budapest, Hungary	G	$6.00,7.215,9.585,9.833,11.91$ (Tues., Fri.)
11:00-11:25 p.m.	0400.0425	Bucharest, Rumania	F	5.99, 6.155, 6.19, 9.57, 9.68, 11.775. 11.94
11:00-11:30 p.m.	0400-0430	Oslo, Nonway	P	6.185, 9.61 (Sun.)
11:30 p.m.-2:30 a.m.	0430-0730	London, England	G	6.175 (via Antiqua)
11:50 p.m.-1:00 a.m.	0450.0600	Havana, Cuba	G	11.725, 11.76
$12 \mathrm{mdt} .12: 15 \mathrm{a} . \mathrm{m}$.	0500.0515	Jerusalem, Israel	G	5.90, 7.412, 9.009
$12 \mathrm{mdt} .2: 00 \mathrm{a} . \mathrm{m}$.	0500.0700	HCJB, Quito, Ecuador	G	6.05, 9.56

TO WESTERN NORTH AMERICA

TIME-EST
3:00-3:15 a.m. 3:00-4:25 a.m.

3:00-5:30 a.m. 3:00-6:00 a.m. 4:00-4:15 a.m. 4:00-4:30 a.m. 4:10-4:30 a.m. 4:15-4:30 a.m. 4:30-6:00 a.m.

4:30.8:30 a.m. 5:00-5:15 a.m.
5:30.7:00 a.m.
6:00-6:30 a.m.

6:00-7:20 a.m. 6:00-8:55 a.m4 7:00.7:15 a.m. 7:00-8:00 a.m.

8:00-8:15 a.m.
8:15-10:30 a.m. 8:42-8:51 a.m. 9:00.9:15 a.m. 10:00-10:15 a.m. 10:00-10:30 a.m. 11:00-11:07 a.m. 11:00-11:15 a.m. 11:00-a.m. 12 noon 12.noon-12:15 p.m. 12 noon-1:20 p.m. 1:00-1:15 p.m. 1:15-3:00 p.m. 2:00-2:15 p.m. 2:00-2:30 p.m. 2:00-4:00 p.m. 2:30-3:00 p.m. 2:30-3:20 p.m. 2:30-4:30 p.m.

TIME-GMT STATION

1100-1115	Tokyo, Japan	P	5.99
1100-1225	Trans-World Radio, Bonairs, N.A.	G	11.815
1100-1330	London, Englaṇd	G	5.99 (via Sackuille), 11.75 (via Tebrau).
1100.1400	**VOA, Washington, USA	G	5.955, 9.73
1200.1215	Tokyo, Japan	P	5.99
1200-1230	**Tashkent, U.S.S.R.	F	6.025, 9.60, 11.925
1210-1230	**Santiago, Chile	F	$6.195,9.566,11.81,15.15$
1215-1230	HCJB, Quito, Ecuador	G	11.745
1230-1400	Trans-World Radio Bonaire, N.A.	G	15.255 (Sat., Sun.)
1230-1630	HCJB, Quito, Ecuador	G	11.745, 15.115
1300.1315	Tokyo, Japan	P	5.99
1330.1500	**Oelhi, India	F	11.81, 15.345
1400-1430	Tokyo, Japan	G	5.99
	**Tashkent, U.S.S.R.	F	9.60, 11.925
1400-1520	**Hilversum, Holland	G	11.73 (via Talata)
1400-1655	Manila, Philippines (VOP)	F	9.58 (Closes 1555 Sun.)
1500-1515	Tokyo, Japan	G	5.99
1500-1600	London, England	G	17.84 (via Ascension) Sat., Sun. also 9.58 (via Sackville)
1600-1615	Tokyo, Japan	G	5.99
	London, England	G	9.58 (via Sackville), 17.84 (via Ascension)
1615-1830	London, England	G	9.58 (via Sackville)
1642.1651	Hilversum, Holtand	G	I, 1.82, 15.19 (via Bonaise, Mon,Fri.)
1700-1715	Tokyo, Japan	G	5.99
1800-1815	Tokyo, Japan	G	9.505
1800-1830	Dsio, Noway	F	11.895 (Sun.)
1900-1907	**Papeate. Tahiti	F	11.825, 15.17 (exc. Sun.)
1900-1915	Tokyo, Japan	G	9.505
1900-2000	Taipei, Taiwan	G	9.51, 11.86, 15.225
2000.2015	Tokyo, Japan	G	9.505
2000-2120	**Hilversum; Holland	G	11.73 (via Talata)
2100-2115	Tokyo, Japan	G	9.505
2115.2300	London, England	G	9.58 (via Ascension)
2200-2215	Tokyo, Japan	G	15.105
2200-2230	**Caracas, Venezuela	F	15.40 (varies; Mon.Fri.)
2200-2400	**VDA, Washington, USA	G	17.82, 17.895, 21.61
$2230 \cdot 2300$	Jerusalem, Istrael	F	7.412, 9.815, 11.645, 12.025
2230.2320	Johannesburg, S. Africa	G	5.98, 9.585, 11.80, 11.90
2230-0030	Moscow, U.S.S.R.	G	$6.02,7.26,9.635,9.78,12.05,15.14,15.18$; $15.455,17.72$

EICO 390 SWEEP/FUNCTION generator
■. 2 Hz to 200 KHz

- Sine, Square, Triangle
- Linear \& Log Sweep

Now you can afford a Function Generator that will meet all your signal requirements! The 390 generates discrete sine, square, and triangle waveforms over a very broad frequency range. You have a choice of either linear or logarithmic sweep with slow, medium, or fast rates. The 390 also allows for external frequency control through a rear panel input. With its 50 -ohm output impedance and calibrated altenuator, the 390 can handle everything from checking the response of an audio amplifier to driving digital circuits.
Model 390 assembled $\$ 169.95$

EICO 388 PORTABLE COLOR BAR

 PATTERN GENERATOR- Battery Operated with LED Indicator - IC Digital Circuit Design
- RF Adjustable, Channels 2, 3, 4

The 388 is truly the most advanced pocket-size portable color generator in the field today. A single MOS LSI IC provides 9 digitally controlled, stable patterns. The 388 operates by simply connecting its output cable to the TV's VHF terminals. Two matrix slide switches select any one of the 9 patterns.
Crystal controlied chroma and timing oscillators assure precision, accuracy and stability. The 388 is powered by two 9 -volt transistor batteries.
Model 388 assembled $\$ 89.95$
FREE EICO CATALOG
For latest EICO Catalog and name of nearest EICO Distributor, check reader service card or send $50 ¢$ for fast first class mail service.
EICO-283 Malta Street, Brooklyn, N.Y. 11207 Leadership in creative electronics since 1945.

Hot soldering irons can be murder on delicate electronic components such as IC's. That's why the DIGI-DESIGNER will become your bugs' best friend. It's a solderless breadboarding instrument that can save you time and burned out parts. DIGI-DESIGNER comes complete with clock, dual pulsers, logic monitors, voltage switches, built-in 5 volt supply, binding posts for external power, input/output BNC's, and more. Everything you'll need for fast, efficient circuit design.
DIGI-DESIGNER. It means the end of "IC Hotfoot" and the start of efficient, creative circuit design for you. Suggested resale price in U.S.A. - $\$ 77.75$ (in kit form). Now available at your nearest computer store.

E\&L INSTRUMENTS, INC.
61 First Street, Derby, Conn. 06418 (203) 735-8774 Telex No. 963536

Dealer inquiries invited.

2:50.3:10 p.m.	2250-2310	Santiago, Chile
3:00-3:30 p.m.	$2300 \cdot 2330$	Tokyo, sapan
3:00-4:30 p.m.	2300-0030	London, England
3:00-5:00 p.m.	2300-0100	Montreal, Canada.
3:30-4:00 p.m.	2330.2400	${ }^{*}$ Radio Clarin. S. Dominga, Dom, hip.
3:45-4:00 p.m.	2345.2400	**Voice of Drg. of Amierican States, Washington, USA
4:00-4:15 p.m.	0000-0015	Jokyo, Japan
4:00-5:09 p.m.	0000-0100	${ }^{*}$ VOA, Washington, USA
4:30-5:00 p.m.	0030-0100	Moscow, U.S.S.R.
4:30.7:30 pim m_{4}	$0030 \cdot 0330$	London, England
4:40-9:00 p.m.	0040-0500	HCJB, Quito, Ecuador
5:00-5:15 p.m.	0100.0115	Tokyo, Japan
5:00-5:30 p.m.	$0100 \cdot 0130$	Moseow; U.S.S.R.
5:00.7:00 p.m.	0100.0300	Melbourne, Australia
5:00.8:00 p.m.	0100.0400	Madrid, Spain
5:10-5:30 p.m.	0110.0130	* Santiago, Chile
5:30-6:30 p.m.	0130-0230	Tokyo, Japan Moscow, U.S.S.R.
6:00-6:15 p.m.	0200.0215	Tokyo, Japan
6:00.8:00 p.m.	0200-0400	Taipei, Taịwan
6:10-6:30 p.m.	0210.0230	* "Santiago, Chile
6:30-7:00 p.m.	0230.0300	Stockholm, Sweden Moscow, U.S.S.R.
7:00.7:15 p.m.	0300-0315	Tokyo, Japan
7:00-7:30 p.m.	0300.0330	Kien, U.S.S.R. Montreal, Canada
7:00.7;55 p.m.	0300-0355	Paking, China
7:00.8:20 p.m,	0300-0420	**Johamriesturg, S. Africe
7:10.7:30 p.m.	0310.0330	*Santiago, Chile
7:20-8:25 p.m,	0320-0425	**TIFC, San Jose, Costa Rice
7:22-7:28 р.m.	0322.0328	Ergyan, U.S.S.R.
7:30.8:00 p.m.	0330.0400	Moscow, U.S.S. ${ }^{\text {P/ }}$
7:30-8:15 p.m.	0330.0415	Berlin, Ger. Dem. Rep.
7:30-8:30 p.m.	0330-0430	London, England
8:00-8:15 p.m.	0400.0415	Tokyo, Japan
8:00-8:30 p.m.	0400.0430	Sofia, Bulgạria Butapast, Hungary
		Montreal, Canada
8:00-9:00 p.m.	0400-0500	Moscow, U.S.S.R.
8:30.9:00́p.m.	0430.0500	Befne, Switzerland
8:30-11:30 p.m.	0430-0730	London, England
9:00.9:15 p.m.	0500.0515	Jarusalem! Israel Tokyo, Japan
9:00-9:30 p.m.	0500.0530	Liston, Portugal
9:00-10:20 p.m.	0500.0620	Hilversum, Holland
9:00-11:00 p.m.	0500.0700	HCJB, Quito, Ecuador
9:00-11:30 p.m.	0500-0730	Moseqwe U.S.S.R.
9:30-9:50 p.m.	0530-0550	Cologne, Ger. Fed. Rep.
10:00-10:15 p.m.	0600-0615	Tokyo, Japan
10:00-10:30 p.m.	0600.0630	Oslo. Nomay
10:00.11:00 p.m.	0600-0700	Buenos Aires, Argentina
10:00 p.m. 12 mdt .	0600.0800	Pyongyang, Dem. Rep. Korèd
10:30 p.m. $12: 30 \mathrm{a} . \mathrm{m}_{\text {c }}$	0630-0830	Havana, Cuba
10:45 p.m. $12: 45$ a.m.	0645-0845	**Wellington, N.Z.
11:00-11:15 p.m.	0700-0715	Tokyo, Japan
12 mdt -12:15 a,m.	0800-0815	Tokyo, Japan
$12 \mathrm{mdt} \cdot 2: 00 \mathrm{a} . \mathrm{m}$.	0800-1000	Manila, Philippines (FEBC)
1:00-1:15 a.m.	0900.0915	Tokyo, Japan
2:00.2:30 a.m.	$1000 \cdot 1030$	Tokyo, Japan

F	$6.195,9.566 ; 11.81,15.15$
G	15.105
G	$6.175,9.51$ (via sackviltili
	9.58 (vis Ascensiont :
F	5.96
G	11.70 (irregular)
G	$6.13 .9 .64,11.74$

15.105
$11.83,11.895,15.40$

 15.105\(6.02,7.26,9.635,9.78,12.05,15.14,15.18\).15.455, 17.72G 6.175 (via Sackville),9.51 (via Gremville),9.58 (via Ascension)
 $\begin{array}{ll}\text { G } & 6.095,8 \\ \text { G } & 15.105\end{array}$G $6.02,7.175,9.635,9.78,12.05,15.14$,15.18, 15.455G $\quad 15.32,17.795$
F $\quad 6.065,11.88$ (Mon.Sat.)

 6.065, 11.88 (Mon.Sat.)G \(\quad 15.195,15.235,17.725,17.825\)G \(\quad 6.02,7.175,9.635,9.78,11.86,12.05,15.14\),15.18, (to 0200), 15.455 (to 0200)
 15.105

 15.105
 \(9.685,15.425,17.89\)
 \(6.195,9.566,11.81,15.15\)
 9.695, 11.705
 \(6.02,7.26,9.635,9.78,11.86,15.14\)
 15.105
 \(7.26,9.58,9.635,9.78,11.86\)
 \(6.045,6.465,9.535,9.655\)
 7.12,9.78 (via Tî́rna), 11.445, 12:055
 \(15.45,15.385,17.735,17.855^{\circ}\)
 \(3.995,7.27,9.58\)
 6.195, 9.566, 11.61, 15.15
 6.035,9.645. (opens 0300 Sat., Sun.)
 6.02, 9.54, 9.735, 11.69, 15.14
 (Sat./Tue. Wed./Fri.)
 \(6.02,7.26,9.54,9.58,9,635,9,735\),
 9.78, 11.69, 15.14
 P \(\quad 5.965,6.08,9.56,9,73\)
 P \(\quad 5.965,6.08,9.56,9,73\)
 G $\quad 6.175$ (via Sackville),
9.58 (via Ascension)
15.105
9.705 (alt. 9.70)
$6.00,7.215,9.585,9.833,1191$
TTue., Fita
6.045, 9.655
$602,7.175,7.26,9.54,9.58,9.61,1$,
(from 0430), $9.635,9.735,978,11.60$
$602,7.175,7.26,9.54,9.58,9.6 .1,1,60$
(from 0430$), 9.635,9,735,978,1,60$
6.045, 9.725
6.175 (via Antiqua)
6.90, 7.395, 7.412
9.505
$6.025,11.935$ (varites)
$6.165,9.715$, (via Bonaifa)
$6.095,9.56$
$6.02,7,175.7 .25,9,54,758,9.61$
9.635, 4.735, 9.78
5.96 (via Ántiqua)
6.10 (via Malte), 6.185, 9:545,
5.96 (via Antiqua)
6.10 (via Malta), $6.185,9: 545$,
9.505
$9.645,11.87$ (Sun.)
9.69 (Mon.Fri.)
9.82
9.525
11.78
11.78
9.505
9.505
. 11.92
9.505
5.99^{\prime}
6.195,9.566; 11,81,15.15
15.105
$6.175,9.51$ (via \$ackvilial)
9.58 (vie Ascension)
5.96
11.70 (ìrregular)
$6.13 .9 .64,11.74$
$11.83,11.895,15.40$
$6.02,7.26,9.635,9.78,12.05,15.14,15.18$,
15.455, 17.72
6.175 (via Sackville),
Ascension)
15.105
$6.02,7.175,9.635,9.78,12.05,15.14$,
15.195, 15.235, 17.725, 17.825
$6.02,7.175,9.635,9.78,11.86,12.05,15.14$,
Tu5
9.505
*Reception quality, East Coast (West Coast) location: G-good, F-fair, P-poor
**Not intended for North America, but receivable satisfactorily Days refer to local date in target area.

By Hal Chamberlin

MEMORY TESTING

IT'S LATE at night and you have just finished assembling an expansion memory board for your computer. You turn the computer on and operate the console. It seems to function OK. Now it's time to run a memory test program to make sure that every one of those 4096 new bytes can store and recall data reliably.

A good memory test routine should be able to detect all possible failure modes on the new board. When used at home, it can be run continuously for a day or two to "burn in" the components and detect early failures while the warranty is still in effect. The CPU, data busses, and power supply are also exercised proving their ability to handle the additional load. In a small business application it may be wise to run a memory test (and tests of

Fig. 1. Simple memory test.
other system components as well) before processing sensitive financial data.

A Simple Test Program. Basically a test of memory amounts to checking that each memory byte will correctly read back previously stored data. Since each byte is in turn composed of 8 bits, the data used for checking should try each bit in the " 1 " and " 0 " states. Thus a simple test procedure might be first to write all zeroes into a byte, read it back for checking, try all ones, and then go to the next address until all 4096 bytes are tested. Figure 1 shows a flowchart of such a test routine. Actually this is a very poor testing scheme because it will fail to detect a number of common memory board faults.
Shorts between two closely spaced printed circuit traces is a common problem. Assume a solder bridge short between two adjacent data lines on the board. What this means is that those two bits will always be read back identical to each other regardless of what is actually stored in the memory IC's. Usually zeroes will override; meaning that if either of the "paired" data lines has a 0 , it will force the other one to a 0 also. Obviously the test scheme in Fig. 1 would not detect this problem since all bits in the byte are identical. Other complementary patterns such as 252 (10101010) and 125 (01010101) (octal) could be used but no such pattern can guarantee detection of a short between any pair of data lines.

Shorts or opens in the large number of parallel address lines are even more likely and would not be detected either. The effect of most address line problems is that the actual number of distinct storage locations is less than the 4096 it should be. Another way to think of this is that two or more different addresses will refer to the same memory cell. Since the routine uses the same data in each location and only one location at a time is checked, it would probably run OK even if none of the address lines worked! About the only circuitry this routine does
test is the data buffers (if the board has them) and whatever memory cells that can be addressed correctly.

A Better Test Program. Let us try to design a better testing scheme that detects the common faults noted above. To solve the problem of detecting shorted data lines, we should try to store and recall all 256 possible 8 -bit numbers. To detect bad address lines, we should look at all of the other addresses to make

Fig. 2. Better memory test.
sure the data just stored does not pop up someplace eise. Figure 2 shows a flowchart for this more effective test procedure. An estimate of the test execution time can be obtained by multiplying the execution time of the inner loop by 4096 locations times 256 data patterns. On a full-speed 8080 this is about 35 microseconds X $4096 \times 4096 \times 256$ or nearly two days!
This routine is quite effective in locating memory board problems but cannot detect a fairly common (though less so now than in the past) memory chip problem that is termed "pattern sensitivity". This is caused by a sort of "spillover" of
bits into their neighbors on the chip and only causes problems with certain patterns of bits. From the memory chip's point of view this routine writes a single " 1 " bit in a sea of zeroes and checks that the " 1 " remains stored and that none of the zeroes is disturbed. As the test progresses, the " 1 " moves around until all locations are tested. Trying all possible bit patterns is not a feasible solution since there are 2^{1024} of them or about 10^{308} on a typical memory IC. It is possible to make a thorough test of pattern sensitivity in a reasonable time but a detailed knowledge of the particular memory chip's geometry is required.

Using Random Numbers. let us now take a look at how computergenerated random numbers can be used in an even better memory test program. Proper functioning of the data and address circuitry can be simultaneously tested by changing the procedure a little and using random data patterns. Instead of testing one location at a time we will first store data in all of the locations to be tested (the store phase) and then come back and see if all of the locations held their data (the verification phase). Also instead of using the same data in all locations, different random numbers will
(Text continued on p 110)

Fig. 3

* MEMORY TEST PROGRAM USING RANDOM NUMBERS
* WRITTEN FOR A 4 K BLOCK OF MEMORY ON A 4 K BOUNDARY

$000: 000$	061	000	001
$000: 003$	041	001	000
$000: 006$	315	130	000
$000: 011$	042	157	000
$000: 014$	021	000	020
$000: 017$	315	130	000
$000: 022$	315	111	000
$000: 025$	175		
$000: 026$	002		
$000: 027$	033		
$000: 030$	173		
$000: 031$	262		
$000: 032$	302	017	000
$000: 035$	052	157	000
$000: 040$	021	000	020
$000: 043$	315	130	000
$000: 046$	315	111	000
$000: 051$	012		
$000: 052$	275		
$000: 053$	302	067	000
$000: 056$	033		
$000: 057$	173		
$000: 060$	262		
$000: 061$	302	043	000
$000: 064$	303	006	000
$000: 067$	062	161	000
$000: 072$	175		
$000: 073$	062	162	000
$000: 076$	170		
$000: 077$	062	164	000
$000: 102$	171		
$000: 103$	062	163	000
$000: 106$	166	000	000

MTEST	LXI	SP, 400Q	INITIALIZE STACK POINTER
	LXI	H, 1	INITIALIZE RANDOM NUMBER SEED
PASS	CALL	RAND	NEW PASS, GET A RANDOM NUMBER IN HL
	SHLD	SEED	SAVE AS SEED FOR VERIFY
	LXI	D,4096	INITIALIZE ADDRESS COUNTER
STORPH	CALL	RAND	GET A RANDOM NUMBER IN HL
	CALL	MADDR	FORM MEMORY ADDRESS IN BC
	MOV	A, L	STORE RANDOM BYTE IN MEMORY
	STAX	B	AT ADDRESS IN BC
	DCX	D	DECREMENT ADDRESS COUNTER
	MOV	A, E	TEST IF IT IS ZERO
	ORA	D	
	JNZ	STORPH	CONTINUE STORE PHASE IF NOT
	LHLD	SEED	RESTORE RANDOM SEED FOR VERIFY PHASE
	LXI	D,4096	INITIALIZE ADDRESS COUNTER
VERFPH	CALL	RAND	GET A RANDOM NUMBER IN HL
	CALL	MADDR	FORM A MEMORY ADDRESS IN BC
	LDAX	B	GET DATA FROM MEMORY
	CMP	L	COMPARE WITH WHAT WAS STORED
	JNZ	ERRLOG	GO TO ERROR LOG IF NOT THE SAME
	DCX	D	DECREMENT ADDRESS COUNTER
	MOV	A, E	TEST IF IT IS ZERO
	ORA	D	
	JNZ	VERFPH	CONTINUE TEST PHASE IF NOT
	JMP	PASS	GO FOR ANOTHER PASS
ERRLOG	STA	WAS	STORE ERRONIOUS DATA IN ERROR LOG AREA
	MOV	A,L	
	STA	SHLDBE	STORE CORRECT DATA
	MOV	A, B	
	STA	ERADDR+1	STORE ADDRESS OF ERROR
	MOV	A, C	
	STA	ERADDR	
	HLT		HALT OR JUMP TO ERROR PRINT

* SCRAMBLED MEMORY ADDRESS FORMATION ROUTINE
* USES ADDRESS COUNTER IN DE AND RANDOM NUMBER IN SEED
* TO FORM A SCRAMBLED ADDRESS IN BC

000:111	072	157	000	MADDR	LDA	SEED	GET LOWER BYTE OF RANDOM NUMBER
000:114	253				XRA	E	EXCLUSIVE-OR WITH LOWER ADDRESS
000:115	117				MOV	C, A	
000:116	072	160	000		LDA	SEED+1	GET UPPER BYTE OF RANDOM NUMBER
000:121	252				XRA	D	EXCLUSIVE-OR WITH UPPER ADDRESS
000:122	346	017			ANI	17Q	SAVE ONLY 4 BITS FOR 4 K MEMORY
000:124	306	xxx			ADI	(page number)	ADD IN FIRST PAGE NUMBER OF BOARD
000:126	107				MOV	B, A	BEING TESTED
000:127	311				RET		RETURN

Fig. 3 (Cont'd.)
RANDOM NUMBER GENERATOR SUBROUTINE
ENTER WITH SEED IN REGISTERS H AND L
EXIT WITH NEW RANDOM NUMBER IN H AND L
USES 16 BIT FEEDBACK SHIFT REGISTER METHOD
DESTROYS REGISTERS A AND B

000:130	010	RAND	MVI	B, 8	SET COUNTER FOR 8 RANDOM BITS
000:132	174	RAND1	MOV	A, H	EXCLUSIVE-OR BITS 3,12,14, AND 15
000:133	017		RREC		OF SEED
000:134	254		XRA	H	
000:135	017		RRC		
000:136	017		RRC		
000:137	254		XRA	H	
000:140	017		RRC		
000:141	255		XRA	L	RESULT IS IN BIT 3 OF A
000:142	017		RRC		SHIFT DOWN TO BIT 0 OF A
000:143	017		RRC		
000:144	017		RRC		
000:145	346001		ANI	1	CLEAR OUT ALL OTHER BITS
000:147	051		DAD	H	SHIFT HL LEFT ONE
000:150	205		ADD	L	REPLACE BIT 0 OF HL WITH RESULT
000:151	157		MOV	L, A	
000:152	005		DCR	B	TEST IF 8 NEW RANDOM BITS COMPUTED
000:153	302132000		JNZ	RAND1	LOOP FOR MORE IF NOT
000:156	311		RET		RETURN
	.	*	STORACE FOR MEMORY TEST		
000:157		SEED	DST	2	RANDOM NUMBER SEED SAVE
000:161		WAS	DST	1	ERROR LOG AREA, ERRONIOUS DATA
000:162		SHLDBE	DST	1	CORRECT DATA
000:163		ERADDR	DST	2	ADDRESS OF ERROR
000:165			END		

a revolutionary concept in kit building...

THE PROGRAMMABLE CLOCK KIT!

SYSTEM 5000 is the first full-feature timepiece available in programmable form. After the circuit has been assembled and tested, all that is necessary is to add the appropriate switches and jumpers to easily program the system for the desired functions. The system may be expanded or reprogrammed at any time.

This represents a revolutionary concept in adaptability and flexibility. Build an Alarm/Clock/Calendar or a full feature Desk ar Radio Station clock. Use the DUPLICATE TIME REGISTER to monitor GMT. another time zone, or as an elapsed timer. Add the optional relay to control AC or DC accessories. The possibilities are limited only by your imagination.

TIME OF DAY RE BEGISTER \& FOUR YEAR CALENBH.
formar - ALARM WHL
IT \& ADDITIONAL ALAL
"his and hers" alarm or activate an act preset time - 10 MINUTE SNoozes Preget time - 3 FUNCTION ALARTM SELECT - tome, relay, or relay the ONE HOUR DOWN COUNTER OBRIGHI ESCENT DISPLAY - . $5^{\prime \prime}$ Easy wo read AM/PM - AUTOMATIC BISPLAY DIM POWER FAILURE INDICATION - 12 \& 24 Holm DISPLAY - BLINKING OA STEADY COLON -GIM PLE EORWARD AND REMEASE TIME SETTING -

add a new dimension to time itself with SERIES 2000 Decorator Clocks

FACTORY ASSEMBLED - 1 YEAR WARRANTY Ec-2001 Solid Acrylic "Time Capsula" - $\$ 59.95$ EC-2002 Acrylic \& Hardwood . S49.95

A bright Fluorescent display provides easy to read numbers that brighten and dim autornatically according to the light. The clear Acrylic tube with Acrylic or Hardwood end blocks gives thase clocks a unique look of simple elegance. AM/PM \& pawer failure indication. Seconds display button. $3 \%{ }^{\prime \prime} \times$ 3\%" $\times 5 \%$ ". $50 / 60 \mathrm{HZ}$
Spacify blue or green display, 12 of 24 hour time, and chaice of Hardwood - Walnut, Zebrawood, or Rosewood.

COMPLETE KITS - 90 DAY WARRANTY EC-2001-K Solid Acrylic NEW! \$39.95 EC-2002-K Acrylic \& Herdwood SPECIAL! $\$ 34.95$

DIRECT DRIVE ELIMINATES RFI - SINGLE 9 VOLT BATTERY BACKUP - DISPLAY SECOND CONTROL - HOLD AND RESET CONTROLS. $50 / 60 \mathrm{HZ} \cdot 700$ WATT RELAY OPTIONAB
SYSTEM 5000 includes all components, 2 time sets ${ }^{9}$ ting switches, and complete assembly and proprate, ming manuals. Switches for additional functionsw relay are not included but are availahle wf

$$
\text { RELAY OPTION }-\$ 4.00
$$

Includes 700 watt relay and all interflefor anle. Will control appliances, stafigig ing
somman \& \because 南 pethbotfonp and 2 bivek spgi onde switehes. Prourame all major featuris.

CASE RPTION - 911.00
Hand finished, solid wainut cabinet complete with faceplate and rear paneh.
Fond your check or mongy order tedey for fast delivery, Add $\$ 1.00$ par clock to cover shipping and insurance. Money back gyarantee on all products if not fully satisfied. N.J. residents add 5\% stles tax. Use your Master Charge or BankAmericard. Phone orders accepted.

DIGITAL CONCEPTS CORPORATION 249 Route 46, Saddle Brook; N.J. 07662 201/845-7101
be stored into each location. Finally, instead of storing and veritying in an ascending sequence of addresses, a scrambled sequence based on random numbers will be used.

One potential problem with this method is that, with true random numbers, it is not possible to tell during the verification phase what the stored data should be. One solution would be to retain a copy of the correct pattern in known good memory. A better solution is to use a "pseudo random" number generator. Such a generator works by creating a new number from an old one which is
called the "seed." A sequence of random numbers is obtained by repeatedly calling the generator routine giving the last number it produced. If the same initial seed is used, then the sequence of random numbers will be the same. So we have to save only the seed to be able to regenerate the sequence for verification. A scrambled sequence of addresses can be obtained by exclusive OR'ing the lower 12 bits of the memory address with a random number that changes after each "pass" (store and verify phase) through the test routine. Also, after each pass, the data pattern

OPERATIONAL AMPLIFIER QUIZ

BY WILLIAM E. PARKER

Assume each of these circuits is an

ideal op amp and each input is $\mathbf{+ 1 . 0}$ volt dc. Determine the output voltages.

Interference between television and CB radio is an annoying and not uncommon problem. Avanti solves these problems with 3 line filters...

AV 800 TV interference filter (low pass) installs in CB antenna line and is especially useful for interference on CH 2 and 5 of poorly filtered TV receivers.
impedance $=50$ OHMS
line loss $=$ negligible
VWSR $\quad=1.1: 1$
attenuation on $\mathrm{CH} 2(54 \mathrm{MHz})=80 \mathrm{db}$
1000 watt capacity
3 db cutoff frequency $=43 \mathrm{M} \mathrm{Hzz}$

AV 811 TV interference filter (hi-pass) installs in TV antenna line and supplements inadequate TV filtering to prevent interference between TV or FM and CB or other high frequency radio services.
impedance $=300 \mathrm{OHMS}$
line loss $=$ negligible
VSWR $=1.1: 1$
cutoff frequency $=54 \mathrm{MHz}$

AV 820 A.C. line filter prevents transmission of CB signal through AC power lines. Suitable to contain signal at C.B. transceiver or to prevent outside signal from entering TV through AC line. 1200 watt capacity.
Avanti makes a complete line of high performance mobile and base CB anten nas from \$11.95 to \$404.00
Free 24 page color catalog.

0020 CIRCLE HO. 10 ON FREE INFORMATION CARD

Amazing MEGASPARK, the advanced-design Opto-Electronic Breakerless Ignition System, FITS ANY CAR! Replaces points and condenser - gives longer spark plug life. Increases performance, mileage and driving satisfaction while cutting fuel and maintenance costs dramatically. Learn the facts and don't settle for less than the best Models from $\$ 29.50$ to $\$ 64.50$

The only unit that gives you all these features:

- LIFETIME WARRANTY
- DIFFERENTIAL AMPLIFIER CIRCUITRY
- FULL INTERNAL VOLTAGE REGULATION
- AUTOMATIC OVERCURRENT PROTECTION

Rush name and address for FREE information package including cataiog and discount offier، Or call toll-free 24-hours 800-648-4711, Ext. 22.

megnspank

by

Operation Assist
you need information on outdated or rare equipment-a schematic. parts hist eic-another reade might be able to assist Simply send a posicard to Operation Assist. Popular Electronics. 1 Park Ave. New York NY 10016 For those who can help readers, please respond directly to them Theyll appreciate it (Only those tlems regarding equipment not avallable from normal sources are oublished ।

Oid Tubes W11, UV199, UV99, UV20tA, UX201A,30 and VT-24-864. Needed for old radio collection. Tim Ding, 3752 Orange Ave., Long Beach. CA 90807

Shaevitz Model S16A oscilloscope. Need manual and schematics. Geraid Kauffman, 99020 Nohua PI., Aiea, HA 96701.

Tokyo Transistor Model MT-501A candle TV. Schematic, service manual or parts. Bernie J. Workman, 730 Jefferson Ave., Huntington, W. VA 25704.

Electromec Model 1720 oscilloscope. Schematic, operating and maintenance manuals. Perry C. Hutchison, 237 Sheldon, Ames, lA 50010

Mattes Model SSP-200 stereo power amplifier. Need schematic. G.D.C., Box 824, Huntsville, AL 35804

Smith Florence Model 810 I-R-E meter. Need manual and schematic. John R. McDaniel, R. R. \#1, Box 218, Spencer, IN 47460.

Atwater Kent Model 812 radio. Need schematic and parts list. P. A. Seuferer, 706 New Castle Rd., Marshalltown, IA 50158.

Pentron Model T-90 reel-to-reel tape recorder. Need drive belts and instruction manual. John Whybrew, P. O. Box 387, Upland, IN 46989

Picture Tube type 13AP4. Need Source. Bob Dvorak, 6244 Colby, Lincoln, NE 68505

Hammarlund Model HQ 170 ham band receiver. Schematic calibration and maintenance information needed. Bill Bruyn, 13 Sullivan Ave., Ottawa, ONT,K2G 1 S8 Canada

Hallicrafters Model S-40A shortwave receiver. Schematic and instruction manual. Robert R. Lintner, 102 Cherry St. Gnadenhutten, OH 44629

Burroughs Model E3500 computer. Operating and programming instructions needed. Frank Hoszu, 725 Wiagara Ln., Wayzata, MN 55391

Supreme Model 546 oscilloscope. Schematic and manual needed. Peter Pellerzi, 34-45 28th St., Astoria, NY 11106.

Acoustech Model XI stereo power amplifier. Schematic, voltage chart and manual. William Lourie, 2444 White Rd., Cleveland, OH 44118.

Westinghouse Model H-161 AM/FM radio. Schematic and service manual needed. Frank Holland, 17 Hilltop Trailer Cl., Fairfax, VA 22030.

Navy type CCT-46217 radio receiver. Schematic, service in formation and operating manual needed. Ed Grimes. 569 N. Main Republic, MO 65738.

DeVry transistorized automotive analyzer. Manual or schematic needed. Stanley G. Boler, 116 S. Washington St., Knightstown, $\mathbb{N} 46148$

Guided Radio Corp. Model M-116A battery powered megaphone set. Need schematic and one 1J6 tube. Dwayne Pantle, Rte. 2, Box 131-C. Woodburn, OR 97071.

Superior Instrument Model TV-50A genometer. Schematic and/or service manual. Dennis Arvisais, 71 Plymouth St. New Bedford, MA 02740

Packard Bell Model 920, "Sync-Lok" TV camera. Schemat ic and manual needed. Mr. Terry D. Caster, 6515 Hunters Ridge, Holly, MI 48442

Precision Model 120 V.O.M. Meter movement needed Gary Lawson, 128 Poillon Ave., Staten Island, NY 10312

Knight Model C-22 Citizens Band transceiver. Construction and operating manual needed. Robert W. Boehnke, 3011 Antioch Rd., Perry, OH 44081

McMurdo Model 911 silver sweep generator. Need sche matic and maintenance information. John Zetlmeier, 29 Coolidge St., Haverstraw, NY 10927

Hammarlund Model CB214 CB transceiver. Schematic needed. Joe Dura, 2910 Red Fox Run, Warren, OH 44485.
in your Electronics Career through

by correspondence, while continuing your present job. No commuting to class. Study at your own pace. Learn from complete and explicit lesson materials, with additional assistance from our home study instructors. Advance as fast as you wish, but take all the time you need to master each topic. Profit from, and enjoy, the advantages of independent study.

The Grantham electronics degree program begins with basics, leads first to the A.S.E.T. degree, and then continues through the B.S.E.E. degree level. Our free bulletin gives complete details of the program itself, the degrees awarded, the requirements for each degree, and how to enroll. Write or phone (no collect calls please) and ask for BULLETIN E-77
Grantham School of Engineering 2000 Stoner Ave., Los Angeles, CA 90025

- Telephone (213) 477-1901

Worldwide Career Training thru Home Study
CIRCLE NO. 31 ON PREE INFORMATION CARD

You'd be proud to buy her an organ this good. . . but how would you feel if you'd also built ? It's a special kind of satisfaction. The gift of a fetime of magnificent music, crafted with your own hands!

And you can do it! You need no prior electronic or mechanical abilities. Just the capacity to follow instructions. Every step is clearly detailed, every component is supplied. You'll find the asembly process as enjoyable as the music which follows!

And what music! For this is a truly fine instrument you will build. Far superior to most "readymade' organs. easily comparable to others at twice the price. Kit costs range from $\$ 650$ to $\$ 2850$ for all basic components, and you can purchase it in sections to spread costs out... or have two-year time payments.

Just send the coupon for the fascinating Schober color catalog (or enclose $\$ 1$ for a record that lets you hear as well as see the quality of Schober).

CIRCLE NO. 63 ON PREE INFORMATION CARD POPULAR ELECTRONICS

DEALFRS,DCES KOUR DISLRI:UORREALY CARE

We really can't say anything about the "other guy,"but at BENNIES, your business counts. Every dealer we handle gets the best service possible,including a weekly mailer of specially priced items you'll have to see to believe!Send $\$ 5.00$ (deductible from your first order if made within 90 days) and your tax number for our giant new 248 page catalog, and see the difference for yourself. BENNIES. We're the distributor who cares.Sorry,catalog only available to dealers.

AND MORE THAN 50 OTHERS BUY THE MODERN WAY BY MAIL-FROM

Department 2175 12 East Delaware Chicago, Illinois 60611 312-664-0020

CIRCLE NO. 34 ON fREE INFORMATION CARD

Our 2ard year of service to the World's finest cratismen and technicians.

A carefully selected and tested assortment of unique, hard-fo-find tools, clever gadgets, precision instruments, bargain kits. One-stop shopping for the technician, craftsman, hobbyist, lab specialist, production supervisor. Many tools and measuring instruments available nowhere else. One of the most unusual and complete tool catalogs anywhere. Get your copy of the NC FLASHER today.

Nrfional Comera 2000 West Unien Ave., Dect. G6A Entlowed, Clorate soill (303) $782-1613$

DIGITAL TROUBLESHOOTING

by Richard E. Gasperini
The heart of this book is in three chapters. The first covers tools such as logic probes and comparators, and techniques such as piggy-backing IC's, selective shotgunning, toothpicking, and "smoking it out." The chapter on logical troubleshooting examines ways of localizing the problem, including half-splitting and the serial method. The third shows how to remove IC's, with vacuum devices, combination irons, and desoldering wick. The other 15 chapters offer background material (numbering systems, how IC's are manufactured, obtaining parts, logic symbols) or describe various circuits and show how to troubleshoot them (bipolar IC's, MOS, flip-flops, counters, shift registers, displays, memories, etc.). An appendix shows how to decode IC manufacturers' type numbers.
Published by Movonics Co., distributed by Hayden Book Co., 50 Essex St., Rochelle Park, NJ 07662.180 pages. $\$ 9.95$ soft cover.

MICROCOMPUTER DESIGN

> by Donald P. Martin

Published by the manufacturers of the Mike 3 and Mike 8 hobby microcomputers, this handbook goes into great detail on the 8008 and 8080 microprocessors. After comparing them with several other popular MPU's, the author examines timing, bus structures, input/output instructions, RAM and ROM, DMA, interrupts, timers, digital displays, interfacing, keyboards, analog I/O, software, and testing. The book concludes with two minimal micros, using 9 and 19 chips, and a thorough discussion of the CPU board for the Mike 3.
Published by Martin Research, 3336 Commercial Ave., Northbrook, IL 60062. 416 pages. $\$ 25$ soft cover.

THE RADIO AMATEUR'S HANDBDOK

by Robert Hertzberg, revised by A. Frederick Collins First published in 1964, this well-known handbook is now in its 13 th edition. New chapters have been added on CB radio and 2-meter fm equipment. There are chapters on vacuum tubes and solid-state devices, construction techniques, power supplies, receiver and transmitter theory, amateur licenses, antennas, mobile operation, test equipment, and setting up and operating an amateur station.
Published by Thomas Y. Crowell Co., 666 Fith Ave., New York, NY 10019. 378 pages. $\$ 8.95$ hard cover.

MICROCOMPUTERS/MICROPROCESSORS: HARDWARE, SOFTWARE AND APPLICATIONS
by John L. Hilburn and Paul M. Julich Part of the extensive Prentice-Hall series on automatic computation, this lean-meat text requires no formal training in digital logic. The first three chapters provide the needed background in basic elements, logic, and number systems. Next discussed are microcomputer hardware (ROM, read/write memory, microprocessors), software (machine, assembly and high-level languages), and interfacing to peripheral devices. Ten microprocessors are discussed in detail (with instruction sets given in the appendixes), and the final chapter is on design and applications.
Published by Prentice-Hall, Englewood Cliffs NJ 07632. 372 pages. $\$ 16.50$ hard cover.

SOLID-STATE ELECTRONICS

by Frank P. Tedeschi and Margaret R. Taber Intended for use in junior colleges, technical institutes and industrial training courses, this book is a combination text and lab manual. Prerequisites are a familiarity with algebra and basic electricity. Chapters are included on rectification, power-supply fitters, zener diodes, junction transistors, the three configurations (common-base, common-emitter, common-collector), load lines, and biasing for common-emitter circuits.
Published by Van Nostrand Reinhold Co., 450 West 33 St., New York, NY 10001. 202 pages. $\$ 8.95$ hard cover.

MODERN GUIDE TO DIGITAL LOGIC: PROCESSORS, MEMORIES \& INTERFACES

by United Technical Publications, Inc. The first four chapters of this guide are on Schottky TTL, ECL and MECL logic gates, at a fairly high technical level. More complex circuits, such as adders and multipliers, accumulators and counters are taken up in the next two chapters, on the MECL 10,000 family, and MSI/LSI Schottky TTL. After a chapter on high-noise-immunity logic gates, and one on using and interfacing CMOS, the book ends with a short chapter on microprocessors and a longer one on bipolar and MOS memory (RAM and ROM). Most of the material in the book is taken from seminars, technical papers and data provided by Motorola, Texas Instruments, Intel, Teledyne Semiconductor, etc.
Published by Tab Books, Blue Ridge Summit, PA 17214. 294 pages. $\$ 6.95$ soft cover, $\$ 9.95$ hard cover.

QUESTIONS AND ANSWERS ABOUT CB INTERFERENCE

by Leo G. Sands Several hundred short questions and detailed answers are divided into seven parts, on interference types, audio rectification interference, harmonic and overload television interference, interference to radio reception, and auto-engine noise. The questions are explicit, the answers straightforward.
Published by Howard W. Sams \& Co., 4300 W. 62nd St., Indianapolis, IN 46206. 80 pages. $\$ 3.95$ soft cover.

ELECTRONICS MARKET PLACE

REGULAR CLASSIFIED: COMMERCIAL RATE: For firms or individuals offering commercial products or services, $\$ 2.25$ per word. Minimum order $\$ 33.75$. EXPAND-AD CLASSIFIED RATE: $\$ 3.35$ per word. Minimum order $\$ 50.25$. Frequency discount: 5% for 6 months: 10% for 12 months paid in advance. READER RATE: For individuals with a personal item to buy or sell, $\$ 1.35$ per word. No minimum! DISPLAY CLASSIFIED: $1^{\prime \prime}$ by 1 column ($2-1 / 4^{\prime \prime}$ wide), $\$ 260.00$. $\mathbf{2}^{\prime \prime}$ by 1 column, $\$ 520.00$. $3^{\prime \prime}$ by 1 column, $\$ 780.00$. Advertiser to supply film positives. For frequency rates, please inquire.
GENERAL INFORMATION: Payment must accompany copy except when ads are placed by accredited advertising agencies. First word in all ads set in caps. All copy subject to publisher's approval. All advertisers using Post Office Boxes in their addresses MUST supply publisher with permanent address and telephone number before ad can be run. Advertisements will not be published which advertise or promote the use of devices for the surreptitious interception of communications. Ads are not acknowledged. They will appear in first issue to go to press after closing date. Closing Date: 1st of the and month preceding cover date (for example, March issue closes January 1st. Send order and remittance to POPULAR ELECTRONICS, One Park Avenue, New York, New York 10016, Attention: Hal Cymes.

FOR SALE

$\overline{\text { FREE! Bargain Catalog-l.C.s, LED's, readouts, fiber }}$ optics, calculators parts \& kits, semiconductors, parts Poly Paks, Box 942PE, Lynnfield, Mass. 01940 .
GOVERNMENT and industrial surplus receivers. transmitters, snooperscopes, electronic parts, Picture Catalog 25 cents. Meshna, Nahant, Mass. 01908.
LOWEST Prices Electronic Parts. Confidential Catalog Free. KNAPP, 3174 Eth Ave. S.W., Largo, Fla. 33540. ELECTRONIC PARTS, semiconductors, kits. FREE FLYER. Large catalog $\$ 1.00$ deposit. BIGELOW ELECTRONICS, Blufton, Ohio 45817.
RADIO-T.V. Tubes- $\mathbf{3 6}$ cents each. Send for free catalog. Cornell. 4213 University, San Diego. Calif. 92105.
AMATEUR SCIENTISTS, Electronics Experimenters, Science Fair Students...Construction plans-Complete, including drawings, schematics, parts list with prices and sources. . . Robot Man - Psychedelic shows - Lasers Emotion/Lie Detector -- Touch Tone Dial - Quadraphonic Adapter - Transistorized Ignition - Burglar Alarm Sound Meter...over 60 items. Send 50 cents coin (no stamps) for complete catalog. Technical Writers Group. Box 5994, University Station, Raleigh, N.C. 27607.
METERS -Surplus, new, used, panel or portable. Send for list. Hanchett, Box 5577, Riverside, CA 92507.
MECHANICAL, ELECTRONIC devices catalog 10 cents. Greatest Values - Lowest Prices. Fertik's, 5249 " D ", Greatest Values -19120.
Philadelphia, Pa. 19120

SOUND SYNTHESIZER KITS-Surt \$12.95, Wind $\mathbf{\$ 1 2 . 9 5}$. Wind Chimes \$17.95, Electronic Songbird \$6.95. Musical Accessories, many more. Catalog free. PAIA Electronics, Accessories, many more. Catalog free.
Box J14359, Oklahoma City, OK 73114.
BUGGED??? New locator finds them fast. Write, Clifton. 11500 -L N.W. 7th Avenue. Miami, Florida 33168.
YOU WILL SAVE BIG MONEY! Surplus, Clearouts, Bankruptcy, Inventory. Deals. Catalog \$1 (redeemable). ETCOA Electronics, Box 741. Montreal. H3C 2V2. U.S. Inquiries.
HEAR POLICE/FIRE Dispatchers! Catalog shows exclusive directories of "confidential'" channels, scanners. Send postage stamp. Communications. Box 56-PE, Cormack, N.Y. 11725.
JAPANESE TRANSISTORS, all transistors original factory made. Free catalog. West Pacific Electronics, P.O. Box 3879, Torrance, CA 90510.
ELECTRONIC ignition: Capacitor-Discharge, pointless. Auburn Sparkplugs. Wheel Stabilizers. Information 20 Auburn Sparkplugs. Wheel Stabilizers. Informati
cents. Anderson Engineering, Epsom, N.H. 03234.

POLICE, Fire monitors, scanners, crystals, CB Transceivers, New Crystal-less scanners. Discount priced. Box 19224, Denver, CO 80219. TELETYPE EQUIPMENT for sale for beginners and experfenced computer enthusiast. Teletype machines, parts, supplies. Catalogue $\$ 1.00$ to: ATLANTIC SALES, 3730 Nautilus Ave.. Brooklyn, NY 11224. Tel: (212) 372-0349.
CARBON FILM RESISTORS. Brand new as low as 1.7 cents. Discounts of 20%. Prompt delivery. FREE samples/speclifications. COMPONENTS CENTER, Box 134P, N.Y., N.Y. 10038.
WHOLESALE C,B., Scanners, Antennas, Catalog 25 cents. Crystals: Special cut, $\$ 4.95$, Monitor $\$ 3.95$. Send make, model, frequency. G. Enterprises, Box 461P, Cleartield, UT 84015.

COMPUTER HOBBYISTS-classified advertising newsletter. $\$ 3.75 /$ year. Free Sample. ON_LINE, 24695 Santa Cruz Hwy., Los Gates, CA 95030.
BUILD YOUR OWN SPEAKERS AND SAVE UP TO 50\%.

 Speakerlab

Announcing the NEW STANDARD in Stereo Testing!
The All-NeW Mode SR12 STERED TEST REBURID
The most complete....most sophisticated... most versatile Test Disc available today...

Attention Professionals Model SR12 is also designed to be used as a highly efficient design and measurement tool. Tests below have been controlled to laboratory tolerances-affording accurate numerical evaluation when used with oscilloscope, chart recorder, output meter, intermodulation-distortion meter and flutter meter.

- $1,000-\mathrm{Hz}$ square waves to test transient and high-frequency response of phone pickups.
- 500 to $20,000 \mathrm{~Hz}$ frequency-response sweep.
- Sine-wave tone-bursts to test transient response of pickup.
- Intermodulation test using simultaneous $400-\mathrm{Hz}$ and $4,000-\mathrm{Hz}$ signals.
- Intermodulation sweep to show distortion caused by excessive resonances in tone arm and cartridge.
- $1,000-\mathrm{Hz}$ reference tones to determine groove velocity.
- $3,000-\mathrm{Hz}$ tone for flutter and speed tests.

Sample waveforms-illustrating both accurate and faulty responses are provided in the Instruction Manual for comparison with the patterns appearing on your own oscilloscope screen.
FREE-An informative manual which charge your order to your american includes charts, tables and diagrams. EXPRESS. BANKMERICARD. MASTER

SURPRISE! Build inexpensively, the most Unusual Test Instruments, Futuristic Gadgets using Numerical Readouts! Catalogue Free! GBS, Box 100A, Green Bank West Virginia 24944.
UNSCRAMBLERS: Fits any scanner or monitor, easlly acjusts to all scrambled frequencies. Only $4^{\prime \prime}$ square $\$ 29.95$ fully guaranteed. Dealer inquiries welcomed. PDQ Electronics, Box 841, North Little Rock, Arkansas 72115. RECONDITIONED Test Equipment. $\$ 0.50$ for catalog Walter's Test Equipment, 2697 Nickel, San Pablo, CA 94806.

LEARN Design Techniques. Electronics Design Newsletter, Digital, linear construction projects, design theory and procedures. Annual Subscription $\$ 6.00$, sample copy $\$ 1.00$. Valley West, Box 2119-B, Sunnyvale, CA 94087.
AUDIO EXPERIMENTERS, Serious Music Syn thesizer Stuff: literature, kits, components, circuits and more. Send SASE for FREE INFO. CFR Associates, POB F, Newton, NH 03858.
SURPRISES GALORE! Projects, ham radio, music synthesizers, etc. IC's, pots, hardware, crystals, keyboards, resistors, etc. Send 13 cents stamp for catalogue. UTEP. Box 26231 B, Sall Lake City. Ulah 84125.

ANYONE GAN SOLDER WITH-
 Kester DO-IT-YOURSELFERS!

Let Kester solder aid you in your home repairs olumbing. A radio, TV, model train, jewelry, Send self-addressed money - repair it yourself. for a FREE Copy of "Soldering Simplified'"
KESTER SOLDER / $\begin{gathered}4201 \text { Wrightwood Ave. } \\ \text { Chicago, Ill. } 60639\end{gathered}$
CB RADIOS, monitors, crystals, CD ignitions. Southland, Box 3591-B, Baytown, Texas 77520.
FERRIC CHLORIDE ETCHANT. $1 / 2$ gallon $\$ 5.50$. Galion \$9.50. Postpaid. CIRCOLEX, Box 198, Marcy, N.Y. 13403. NEW ADJUSTABLE THREE OUTPUT REGULATED POWER SUPPLY, plus 900 parts worth $\$ 400.00$ list, contained in a solid state CARTRIVISION television recorder electronic unit. Schematics, parts cross reference furnished. Uses: HEATHKIT television transisior substitutions, power CB radios and MICROPROCESSORS, build electronic projects. \$17.95 plus $\$ 3.50$ S\&H, USA. Free brochure. Master Charge, BankAmericard. Satisfaction Guaranteed. MADISON ELECTRONICS COMPANY, INCORPORATED, Box 369, D55, Madison, Alabama 35758.

CB CRYSTALS over 20,000 standard and specials in stock from 6.0 MHz to 45.0 MHz . Call or write for information package. Dealer inquiries invited. Roberts Electronics Sales, 7356329 Palms Highway, 29 Palms, California 92277. (714) 367. 6235.

NON SEMI SURPLUS. Monthly picture flyer. Quality. Low prices. Send 25 cents. U.S. only. Startronics, Box 683, McMInnville, OR 97128.
FREE FLYER from Colorado's fastest growing electronic parts distributor, Our second big year with outstanding buys on kits, parts, semi's, scientific items. Visit our retail outiet. J.B. Saunders Company, 3050 Valmont, Boulder, CO 80301.
BUILD AND SAVE. TELEPHONES, TELEVISION, DETEC. TIVE, BROADCAST Electronics. We sell construction plans with an Engineering Service. Speakerphönes, Answering Machines, Carphones, Phonevision, Dialers, Color TV Converters, VTR, Games, $\$ 25$ TV Camera, Electron Microscope, Special Eftects Generator, Time Base Corrector, Chroma Key. Engineering Courses in Telephone, Integrated Circuits, Detective Electronics. PLUS MUCH MORE. NEW Super Hobby Catalog PLUS year's subscription to Electronic Nows Letter, \$1.00. Don Britton Enterprises, 6200 Wlishire Blvd., Los Angeles, Callf. 90048. FREE CATALOG. Unique Components, Kits, Calculators, Digital Thermometers, Ultrasonics, Strobes, Ni-cads, LEDS, Transistors, IC's, Chaney's, Box 27038, Denver, CO 80227.

 YOU CAN PLAY WTHO OUR NEW INCREDIBLE HAND HELD ELECTRONIC GAME. SPECIAL INTRODUCTORY : $\$ \mathbf{8 9 5}$
PRICE ONLY SATISFACTION GUARANTEED NTERFAB, 27963 CABOT RD

TELEPHONES AND PARTS. Free catalog. Write: Surplus Saving Center, P.O. Box 117, Waymart, PA 16472.
PROFESSIONAL UNSCRAMBLERS-use with any scanner / monitor. Free information. Capri Electronics, 8753T Windom, St. Louis، MO 63114.
T.V. COMMERCIAL KILLER. New solid state device will turn off commercials that exceed preset level. Plans $\$ 2.00$. Ken's Electronics, Box 23810, Jacksonville, Florida 32217. NAME BRAND Digital/Analog Test Equipment. Discount prices. Free catalog. Salen Electronics, Box 82, Skokie, II. linois 60076.
CANADA'S electronics bargain centre. Free Catalogue. North American and offshore inquiries welcomed. CANMOS, Box 1690, Peterborough, Canada KgJ $7 S 4$.

SURPLUS TEST EQUIPMENT: USM105A 15Mhz DT oscilloscope $\$ 315$, UPM1 10 spectrum analyzer $\$ 315$, TEK180A $\$ 85$. OS8 2 Mhz oscilloscope $\$ 70$. Fluke $803 \mathrm{R} \$ 125$, HP302AR wave analyzer $\$ 650$. All postpaid guaranteed working. Free information. ACS, Box 8104, Alhens, GA 30601. (404) 353-1634.

SURPLUS COMPONENTS, Communication and test equipment. Illustrated catalog 25 cents. E. French, P.O. Box 249 , Aurora, Mlinois 60505.
ALTAIR OWNERS Dress up your Altair 8800 with our front panel, color coded with two shades of blue, black lettering on white background, fully guaranteed. \$24.85. Catalog Iree. Cycloid, Cherry Drive, Souderton, PA 18964.

MICROPROCESSOR Kit including memory, clock, card reader, controls: $\mathbf{\$ 9 9 . 0 0}$. Anderson, 2266 Kalmia, Boulder, Colorado 80302.
COMMUNICATIONS Publications and Frequency Lists Military, Government, Police, Aviation, Maritime and more Catalog 25 cents. Handler, Box CC, Northfield, III. 60093.

FREE INFORMATION:

Use only one card per person

Abstract

Learning more about a product that's advertised or mentioned in an article in this month's issue is as simple as one, two, three. And absolutely free.

> Print or type your name and address on the attached, card.
> Use only one card per person.

> Circle the number[s] on the card that correspond to the number[s] at the bottom of the advertise- ment or article for which you want more information.
CKey numbers for advertised products also appear in the Advertisers' Index.]

Simply mail the card.

[^4]POPULAR ELECTRONICS
PE3773
Use only one card per person. is POSTAGE RECGUIRED NAME
ADDRESS
CITY
STATE
ZIP
(Zip Code must be included to insure delivery.) (Void after May 31, 1977)
How much reel-to-reel tape have you bought in the past 90 days?
(Please check one)

\square None	$\square 6-10$	$\square 16-20$
$\square 1-5$	$\square 11-15$	\square over 20

\square Please send me 12 issues of Popular Electronics for $\$ 6.99$ and bill me.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100	101	102	103	104	105
106	107	108	109	110	111	112	113	114	115	116	117	118	119	120

POPULAR ELECTRONICS
PE3772
Use only one card per person
POSTACE REOUIAED
NAME
ADDRESS
CITY STATE

ZIP
(Zip Code must be included to insure delivery.) (Void after May 31, 1977)
How much reel-to-reel tape have you bought in the past 90 days?
(Please check one)

\square None	$\square 6-10$	$\square 16-20$
$\square 1-5$	$\square 11-15$	\square over 20

\square Please send me 12 issues of Popular Electronics for $\$ 6.99$ and bill me.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100	101	102	103	104	105
106	107	108	109	110	111	112	113	114	115	116	117	118	119	120

PE3771

NAME
ADDRESS
CITY
STATE
ZIP
(Zip Code must be included to insure delivery.) (Void after May 31, 1977) How much reel-to-reel tape have you bought in the past 90 days?
(Please check one)
\square None $\square 6$-10 $\square 16$-20
\square 1-5 $\quad \square 11-15 \quad \square$ over 20
\square Please send me 12 issues of Popular Electronics for $\$ 6.99$ and bill me.
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
$\begin{array}{lllllllllllllll}16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30\end{array}$
$\begin{array}{lllllllllllllll}31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 & 41 & 42 & 43 & 44 & 45\end{array}$
$\begin{array}{lllllllllllllll}46 & 47 & 48 & 49 & 50 & 51 & 52 & 53 & 54 & 55 & 56 & 57 & 58 & 59 & 60\end{array}$
$\begin{array}{lllllllllllllll}61 & 62 & 63 & 64 & 65 & 66 & 67 & 68 & 69 & 70 & 71 & 72 & 73 & 74 & 75\end{array}$
$\begin{array}{lllllllllllllll}76 & 77 & 78 & 79 & 80 & 81 & 82 & 83 & 84 & 85 & 86 & 87 & 88 & 89 & 90\end{array}$
$\begin{array}{lllllllllllllllllllllll}91 & 92 & 93 & 94 & 95 & 96 & 97 & 98 & 99 & 100 & 101 & 102 & 103 & 104 & 105\end{array}$
106107108109110111112113114115116117118119120

Popular Electronics
 P.O. Box 2905 Clinton, Iowa 52732

Popular Electronics
 P.O. Box 2905
 Clinton, lowa 52732

StereoReview is proud to announce an important set of recordings created to help you expand your understanding of music.

This unique four-disc album is interesting, easy to comprehend, and instructive. It is the first project of its kind to approach the understanding of music through its basic elements:

> rhythm . . . melody harmony . . . texture.

Written and narrated exclusively for Stereo Review by David Randolph, Music Director of the Masterwork Music and Art Foundation, this fascinating set of stereo records will help you become a more sophisticated, more knowledgeable listener-and a more completely satisfied one as well. It will give you an "ear for music' " you never thought you had.
In the GUIDE TO UNDERSTANDING MUSIC, David Randolph first discusses, by means of recorded narration, how the composer uses and unifies all the basic musical elements. After each musical point is made in the narration, a musical demonstration of the point under discussion is provided. Thus you become a part of the creative musical process by listening, by understanding, by seeing how music's "raw materials" are employed by composers and performers to attain their highest level of expressivity and communication through musical form.

FOUR LONG-PLAY STEREO RECORDS:
Record I-The Elements of Music. 1. Rhythm, 2. Melody, 3. Harmony, 4. Texture.

Record II-Sense and Sensation in Music. (The Instruments of the Orchestra.) How Music is Unified.
Record III-Form in Music. Words and Music.
Record IV-Can Music Tell a Story or Paint a Picture? The Interpretation of Music.
The GUIDE TO UNDERSTANDING MUSIC contains
OVER 200 MUSICAL EXAMPLES which have been carefully chosen from among thousands of recordings by major record companies as the best illustrations of musical points made in the recorded narration. In addition, supplementary musical demonstrations were specially recorded for this album.
FREE BOOKLET INCLUDED. The accompanying booklet is a valuable complement to the album. It presents David Randolph's straightforward professional approach to music, and shares the insights and understanding of his many years of experience in bringing music to listeners .. . as well as advice on how you can make the best use of the album.

FIRST TIME EVER OFFERED

The Guide to Understanding Music has been several years in the planning and production stages to assure that it would be as complete, as up-to-date, and as effective a presentation of its subiect as possible. The exclusive four-disc recording is now ready, presentation of its subject as possible. The exclusive four-disc recording is now ready, avallable for the first time through Stereo Review. The special low price is just $\$ 21.98$, postpaid, for all four $331 / 3 \mathrm{rpm}$ stereo long-play records, a price made possible by the Under ordinary auspices, a work of this nature and importance would cost much more.
SPECIAL SCHOOL AND LIBRARY OFFER
Of particular importance is the role the CUIDE TO UNDERSTANDING MUSIE
ean play as a teachine tool for music dopatamente in schools throughout the
country, Orders for 3 sets or more are svatable to schools and libraries it the
the regular price of 521.98 . This specist quantiby prics is also svailahfo to
individuals and orranizations who may hava a need for more than one album.
Schools moy submit orders on stendard purchesing forms.

HERE'S HOW TO ORDER:

CASH: Mail your order along with your name, address and remittance in the amount of $\$ 21.98$ postpaid. (Residents of Calif., Col., Fla., III., Mich., Mo., N.Y. State, D. C. and Tex. add applicable sales tax.)

CHARGE: To your American Express, BankAmericard, Master Charge or Diners Club account! Mail your order, name, address, credit card \# and expiration date (Master Charge customers include 4-digit Interbank \# above your name). Be sure your signature is your order. You will be billed at $\$ 21.98$ plus sales tax, if applicable.

OUTSIDE U. S. A. ALBUMS ARE $\$ 26.98$ POSTPAID.
MAIL ORDERS TO: GUM. CONSUMER SERVICE DIVISION.
595 BROADWAY, NEW YORK, N.Y. 10012.

ARIES brought you the first calculator kit, and the first digital clock kit . . . and now brings you three of the most innovative electronic kits ever made. The System 300 Electronic Music Synthesizer kit is the most advanced in the world today, regardless of price. The AR-781 is a space-age beaury for any decor. And the wholly solid state AR-830 does the work of a $\$ 400.00$ tape memory unit.

WARNING . . . if you're interested in a music synthesizer, don't make a move until you see our catalog first. It's more like a handbook than a caralog, with hundreds of in-depth photographs and descriptions to explain electronic music principles, and to show equipment to do the job. ARIES now offers a complete complement of modules, keyboards, and cases, matched to the most rigorous professional standards. Starter systems priced as low as $\$ 395.00$.

A clear, ruby-red cylinder shows off all six digits of this modern calendar clock Easy-to-read numbers show the hours, minutes, and sec onds, as well as the month and day every ten seconds.
 Red LED 7 -segment numerals are $0.33^{\prime \prime}$ high, in a sturdy cylinder $2-1 / 2^{\prime \prime}$ in diameter and $4-3 / 4^{\prime \prime}$ long, with finished hardwood ends. Time and calendar are controlled by 60 Hz line frequency, with a 12 month movement. Separate time and calendar adjustments. Includes all the components, PC boards, housing, and instructions. Shipping weight 2 lbs, AR-781 Clock Kit

Add finger-touch operation to your old-fashioned dia! telephone with an ARIES AR-830 Automatic Digital Telephone Dialer. This has
 the same layout and con venience as Ma Bell, plus other features she doesn't offer yet. For instance . . . AR-830 always remembers the last number you dialed, in case the line was busy and you want to try again later. Not only that, but the Dialer's memory can store as many as ten of your favorite numbers for one-touch dialing AR-830 uses standard dialing and muting contacts consult local tariffs before connecting. Sh. wt. 2 lbs AR-830 Dialer Kit $\$ 69.50$

ARIES INC.

BOX 808
Peabody, Mass., 01960
(617) 744-2400

CIRCLE NO. 8 ON FREE INFORMATION CARD

MARCH GOODIES: 555-39 cents, 741-29 cents, 747-49 cents, Fairchild jumbo LED's red 12/\$1, green 8/\$1, $2 \times 2 \mathrm{~cm}$ solar cells $\$ 1.50$. Free catalog. Our third year. DIAMOND BACK, Box 194P, Spring Valley, IL 61362.
ALTAIR 8800: BASIC, 12K, video display, tape interface, keyboard w/enclosure, more. Complete description $\$ 1.00$ John Beggs, Box 105, Pasco, WA 99301.
SPECIAL THIS MONTH. IC Sockets, staggered pins, 16 Pin DIP. 10/\$2.00 postpaid. Write for free surplus electronics flyer. R. W. Electronics, 3203 North Western Avenue Chicago, Illinols 60618.
S-K TOOLS - Wholesale Prices!!! Wrenches, Sockets Lifetime Guarantee! 48 Page Catalog - 50 cents. Pioneer Stanwood, Michigan 49346.

C1702A \$7.50; MM5330 \$7.95; 2513 \$9.50; CT7001 $\$ 6.75$ XR2240 $\$ 4.20$; LM3909 $\$ 0.99$; COM2502 $\$ 6.95$. Free Cata log. ELECTRONIC DISCOUNT SALES, 138 N. 81 st Street, Mesa, Arizona 85207.
VOICE SCRAMBLER DECODERS. TR Electronics Model104C is the tinest high quality decoder on the market Adapts to any monitor, 2-1/2 watts output, 3 integrated circuits, filtering to remove scratchy sound and annoying tone, only $3^{\prime \prime} \times 2^{\prime \prime} \times 4^{\prime \prime}$. 1 Year parts \& labor warranty Guaranteed satisfaction. \$45.47. Dealer inquiries welcome TR Electronics, P.O. Box 527, Mason City, IA 50401. (515) 423-7473.
TELEPHONES UNLIMITED, Equipment, Supplies, All types, Regular, Keyed, Modular. Catalog 50 cents. Box 1147E, San Diego, California 92112.

SIRENS, Flashers, Games, Logic breadboard Kits. Catalog free. Ego, Box 1331-pe. Thousand Oaks, California 91360. HAMS put your microcomputer on Fastscan ATV for under \$79. Info and catalog for S.A.S.E. W60RG, 2522 Paxson. Ar cadia, CA 91006.
HIGH CHANNEL crystals available for all synthesizers C.B sets. Free Catalog. FBC. 2928 14th St., N.W., New Brighton, MN 55112

CIRCUIT BOARD tungsten carbide drills, good used condition. 12 assorted for $\$ 3.95 \mathrm{ppd}$. L.R. Design, 515 Birch St., McMinnville, OR 97128.
PANEL FACES made to your specs. Let your project have prize winning professional look. Brochure. PATCO. Box 167. Chalmette, LA 70044.

AM TRANSMITTERS. No license. \$51.95. Hoskins, Box 709, Montclair, N.J. 07042.
T.V. GAMES and other products. Kits, P.C. boards or assembled. Free Catalogue. Galaxy Kits, 108 North Union Ave., Crantord, N.J. 07016.

HYPNOTISM

SLEEP learning. Hypnotic method. 92% effective. Details free. ASR Foundation, Box 23429EG, Fort Lauderdale, Florida 33307.
FREE Hypnotism. Self-Hypnosis. Slaep Learning Catalog! Drawer H400, Ruidoso, New Mexico 88345.
AMAZING self-hypnosis record releases fantastic mental power. Instant results! Free trial. Write: Forum (AA3), 333 North Michigan, Chicago 60601

WEPAY ALL SHIPPING IN CONYINENYAL USA - OTHERS ADD 5\% [10% FOR AIRMAIL] CIRCLE NO. 45 ON REE INFORMATION CARO

S.D.SALES CO DALLAS, TEXAS 75228

Z-80 CPU CARD KIT FOR IMSAI/ALTAIR

\$149. ${ }^{\text {rin }}$

From the same people who brought you the $\$ 89.954 K$ RAM kit. We were not the flrst to introduce an IMSAI/ALTAIR compatible Z-80 card, but we do feel that ours has the best design and quality at the lowest price.

The advanced features of the $Z-80$ such as an expanded set of 158 instructions, 8080 A software compatibllity, and operation from a single 5VDC supply, are all well known. What makes our card different is the extra care we took in the hardware design. The CPU card will your system functlons properly. Dynamlc memory refresh and NMI are brought out for your use. Believe it or not, not all of our competitors have gone to the extra trouble of doing this As always, this kit includes all parts, all sockets, and complete instructlons for doing this. bly. Because of our past experience with our $4 K$ kit we suggest that you order early. All orders wili be shipped on a strict first come basis. Dealers inquiries welcome on this item.

Kit shipped with 2 MHZ crystals for existing 500NS memory. Easily modified for faster RAM chips when the prices come down.

Z-80 Manual - \$7.50 Separately.

Kit includes Zilog Manual and all parts.

JUMBO LED CAR CLOCK
 \$16.95
 KIT

You requested it! Our first DC operated clock kit. Professionally engineered from scratch to be a DC operated clock. Not a makeshift kluge as sold by others. Features: Bowmar 4 digit .5 inch LED array, Mostek 50252 super clock chip, on board precision time base, 12 or 24 hour real time format, perfect for cars, boats, vans, etc. Kit contains PC Board and all other parts needed (except case). 50,000 satisfied clock kit customers cannot be wrong!

FOR ALARM OPTION ADD \$1.50

FOR XFMR FOR AC OPERATION ADD $\$ 1.50$
60 HZ CRYSTAL TIME BASE FOR DIGITAL CLOCKS S.D. SALES EXCLUSIVE!

KIT FEATURES:
A. 60 HZ output with accuracy comparable to a digital watch.
B. Directly interfaces with all MOS Clock Chips.
C. Super low power consumption. (1.5 ma tyo.)
$\$ 5.95$ or
D. Uses latest MOS 17 stage divider IC.

2/\$10.
E. Eliminates forever the problem of AC line glitches.
F. Perfect for cars, boats, campers, or even for portable clocks at ham field days.
G. Small Size, can be used in existing enclosures.

KIT INCLUDES CRYSTAL, DIVIDER IC, PC BOARD PLUS ALL OTHER NECESSARY PARTS \& SPECS

50HZ CRYSTAL TIME BASE KIT - $\$ 6.95$
All the features of our 60 HZ kit but has 50 HZ output. For use with clock chips like the 50252 that require 50 HZ to give 24 hour time format.

THIS MONTH'S SPECIALS! 300.00 KHZ CRYSTAL - \$1.50

 ㄱ 8080A - CPU CHIP by AMD - $\$ 19.95$ 82S129-256 x 4 PROM - $\$ 2.50$ N.S. 8865 OCTAL DARLINGTON DRIVERS 3 for $\$ 1.00$Z-80 - CPU by ZILOG - $\$ 69.95$ MM5204 - 4K EPROM - \$7.95 Prices in effect this month ONLY!

4K LOW POWER RAM BOARD KIT THE WHOLE WORKS - \$89.95

Imsai and Altair 8080 plug in compatible. Uses low power static 21L02-1 500ns. RAM's, which are included. Fully buffered, drastically reduced power consumption, on board regulated, all sockets and parts included. Premium quality plated thru PC Board.

$7400-19 c$	$7411-29 c$	$7451-19 c$
$74 L S 00-49 c$	$7413-50 c$	$7453-19 c$
$7402-19 c$	$7416-69 c$	$7473-39 c$
$74 L S 02-49 c$	$7420-19 c$	$7474-35 c$
$7404-19 c$	$7430-19 c$	$741574-59 c$
$74404-29 c$	$7432-34 c$	$7475-69 c$
$74 S 04-44 c$	$7437-39 c$	$7476-35 c$
$74 L S 04-49 c$	$7438-39 c$	$7480-49 c$
$7406-29 c$	$7440-19 c$	$7483-95 c$
$7408-19 c$	$7447-85 c$	$7485-95 c$
$7410-19 c$	$7448-85 c$	$7486-45 c$
TTLINTEGRATEDCIRCUITS		

$7490-65 c$	$74153-75 c$
$744590-95 c$	$74154-1.00$
$7492-75 c$	$74157-75 c$
$7493-69 c$	$74161-95 c$
$7495-75 c$	$74164-1.10$
$7496-89 c$	$74165-1.10$
$74121-38 c$	$74174-95 c$
$74123-65 c$	$74181-2.50$
$74132-1.70$	$74191-1.25$
$745138-1.95$	$74192-1.25$
$74141-75 c$	$74193-1.00$
	$74195-69 c$

STICK IT!
in your clock
in your DVM, etc.!

Huge Special Purchase Not Factory Seconds As sold by others!
\$3.95

4 JUMBO .50"
DIGITS ON
ONE STICK!
 with colons and AM/PM Indicator)

BOWMAR 4
The Bowmar Opto-Stick. The best readout bargain we have eve offered. Has four common cathode jumbo digits with all seg. ments and cathodes brought out. Increased versatility since any of the digits may be used independently to fit your applications. Perfect for any clock chip, especially direct drive units like 50380 or 7010. Also use in freq. counters, DVM's, etc. For 12 or 24 hour format.

UP YOUR COMPUTER!
 21L02-1 1K LOW POWER 500 NS STATIC RAM TIME IS OF THE ESSENCE!

And so is power. Not only are our RAM'S faster than a speeding bullet but they are now very low power. We are pleased to offer prime new 21LO2-1 low power and super fast RAM's. Allows you to STRETCH your power supply farther and at the same time keep the wait light off. 8 for \$12.95
\$12.95
S.D. SALES EXCLUSIVE!
\$12.95
40 PIN DIP. Everything you ever wanted in a counter chip. Features: Direct LED segment drive, single power supply (12 VDC TYP.), six decades up/down, pre-loadable counter, sep. arate pre-ioadable compare register with compare output, BCD AND seven segment outputs, internal scan oscillator CMOS compatible, leading zero blanking. 1 MHZ . count input frequency. Very limited qty.

WITH DATA SHEET
WESTERN DIGITAL UART
NO. TR1602B. 40 pin DIP
This is a very powerful and
popular part.
NEW-\$6.95 with data
LIMITED QUANTITY
RESISTOR
ASSORTMENT
PC leads. A good mix
of values. $200 / \$ 2$.

1702A 2K ERASEABLE

 PROM'S - \$6.95We tell it like it is. We could have said these were factory new, but here is the straight scoop. We bought a load of scoop. We bought a load of tained a quantity of 1702 A's in sockets. We carefully removed the parts, verified their quality, and are offering them on one heck of a deal. First come, first served. Satisfaction guaranteed! U.V. Eraseable. $\$ 6.95$ each

4 for \$25

TERMS:

Money Back Guarantee. No COD. Texas Residents add 5\% tax. Add 5\% of order for postage and handling. Orders under $\$ 10$. add 75 c . Foraign orders: US Funds ONLY!

FREE KIT Catalog contains Test and Experimenter's Equipment Dage Scientific Instruments, Box 1054P, Livermore, CA 94550.

THE "KING OF KITS". Artisan Organ Kits feature all new modular construction, with logic-controlled stops and RAM Preset Memory System. Write for brochure to: A O K Manufacturing, Inc., P.O. Box 445, Kenmore, WA 98028.

CICS
INTERNATIONAL ELECTRONICS UNLIMITED 10\% OFF WITH \$25 ORDER 15\% OFF WITH \$100 ORDER
these discounis apply to total

74153 7454 74155 74156 74157 74158 7460 74161 74162 7463 74164 74165 74166 74110 74173 74174 74175 74176 74171 74180 74181 74182 74184 74185 74187 74149 74191 7192 74193 7494 74195 74916 74197 74198 74199 74200

毋品

8Fici 372 546 1310 1496 1800 UNN2 ULN2

Pos V Res (super 723) IO-5 Hi Peri Op Amp mbip TO-5 Volt followet TO-5
Neg V Reg TO-5
Pos V Reg TO-
Op AMP (super 741) mDIP TO-S
Mciro Pwi Op Amp mDiP TO-5

V Follower Op Amp mDIP
Hi perl V Comp mDIP to-5
Hi peri V Comp mDIP TIP
Hi Speed Dual Comp DIP
Neg Res 5. 12. $10-220$
Nets Reg 5.2, 12 TO.
Precision Timer Dip
Precition Timer Dip
Quad Op Amp DIP
Quad Comparator DIP

15V, 1av, 24 V) TO-3
Por Vres (5V, 6V, 0V, 12V
$15 \mathrm{~V}, 18 \mathrm{~V}, 24 \mathrm{~V}$ TO 220
15V, $18 \mathrm{~V}, 24 \mathrm{~V}$ 10-220
Af-if Strip detector DIP
AM/FM/SSB Strip DIP
Pos V Reg mDIP
2w Audio Amp DIP
bw Audio Amp mDIP
Lo Noise Dual preamp
Lo Noise Dual preamp DrP
Lo Noise Dual preamp DIP
High Slew rale Op Amp
Power driver TO.S
Prec V Rez OIP
Timer mDIP
Jimer mDtP
Dual s5s Timer DIP
Dual 555 Timer DIP
Phase Locked Loop DIP
Phase Locked Loop DIP
Phase Lokthed toop DIP TO-5
Function Gen mDIP IO-S
Ione Decoder mDJP
Operational AMP TO
Operational AMP TO-S or Dip
Hi Speed Voll Comp DIP
Dual Dillerence Compar Dip
V Reg DIP
Dill. rideo AMPL
ro-s
Dual HEPri Op Amp DIP Comp Op Amp mDip to-5 Fir Dual Op Amp
Fidi
741 mplp
Dual Comp Op Amp mDIP
Stereo multipp amp DIP
Quad Ampliter DIP Quad Amplifter DIP
Core Mem
Core Mem Sense AMPI DIP
Core Mer Sene AMPI DIP
Core Mem Sense AMPL D
Voltage contr. os. DIP

VOICE ACTIVATED SWITCH

Volume Controls

- 12 Plece Kil

Less Than 5c Each - 12 Popular Values
Various dia. \& lengths -Some Have Switches

Red LED's
-Large Dome Type
$-10 \mathrm{~mA} \cdot 2$ Volt
Emits red light. Long life, hi-quality. Shpg. wt. $1 / 4 \mathrm{lb}$.

60-Minute

 Blank Cassettes 180 minutes of recording time for less than 16 per minute. Stock up now Shpg. wt. $1 / 2 \mathrm{lb}$.hardware and components
1/4 RPM Timing Motor 115 V . AC RPM Timing Motor 115 V . AC
$3-6 \mathrm{~V}$. DC Hobby Motors Kit of 5 2-Speed Motor 115 V AC
3600 RPM Mo
4000 RPM Appliance Motor 115V. AC 6V. 30 ma Lamp W/Leads phg $6 \mathrm{~V} . \mathrm{Minl}^{-S c r e w ~ b a s e ~ 8 u l t, ~ P k g . ~} 2$ 12 V Mini-Screm Base Bulb, PR. ${ }^{2}$ 12 V .81 pin Mirn Bulbs. Phe
TV Cheater Cord Pks of Terminal Strips. Pkg. 40 Asstd. 258474 Output Transistor Farichild 703 Type IC arichild 717 Type ic IC Grab Bag. 10 Asstd. Types
Calculator II Che Sacu Grab Bag, 25 Asstec 4202 Cadmum Photo Cells, Pkg. of 2
Motorola Amplifer IC 8 Pin 0 . Motorda Amplitier IC. 8 Pin D.I.P 12 Digit Calculator IC
${ }^{\prime \prime} 7$ Key Calculator Keyboaro 3" 7 Seg. L.E.D. Green. Comm. A
3" 7 Seg. L.E. D . Yellow. Comm. A 3" Seg. L.E.D., Red, Comm. A ${ }^{3} 77^{9}$ See Ligit Display
Ti Calculator Keyboard, 20 Key
16 Key Switch Pad. Less Keys
23 Key Switch Pad tess Keys
Calculator Keys. Pkg. of 20 Assto
455 XHz If Iransiormer, Pair Toggle Switch Kit. Pkg. 3 Asstd
Mini Toggle Switch D. Minn Toggle Switch D.P.D.T. 34.
See-Saw Rocker Switch D.P.D.T. $3 A$ See-Saw Rocker Switch D.P.D.T. 3A
Center-0ft Mini Toggle S. P.D.T. 3A. Three Level Push Switch,
Mercury Swilch S
Mercury Swilch. S.P.D.I. SA.
117 V AC Relay, Mini. S.P.D.I $2 A$ Minn Rocker Switch, S.P.S.T. IA.
Leat Switch S.PD.T. SA. Pkg. Leat Switch S.P.D.T. 5A. Pkg.
Heary Doty Toggle. 3.P. D.T. POA

6 \& 12V. Trans., 117V. PRI, . SA SEC 128 IoV. Trans. 117 V PRI 2 A SEC.
6.3V. Trans., II7V. PRI IA. Sec

FREE CATALOG

260 SO. FORGE ST. DEPT. IV, AKRON, OHIO 44327
| NAME.
adDress \qquad CITY STATE
Satisfaction guaranteed. Shipment will be made postage prepaid within 3 days from number and exp. date), or money order. Phone Orders - Bofi and M/C card or C.O.D

Add $\$ 1.00$ to cover shipping and handing if order is less than $\$ 10.00$
California residents add sales tax. include shipping expense for orders shipped out of
U.S. and Canada approx. 10\% of order.

INTERNATIONAL ELECTRONICS UNLIMITED
P.O.BOX 3036-R MONTEREY, CA. 93940 USA PHONE (408) 659-3171

MOTOROLA CIRCUITS

		MC1741CG	.98
MC725P	1.50	MC1804P	.98
MC740L	1.55	MC1806P	.98
MC790P	1.50	MC1810P	.98
MC832P	.48	MC2053L	.45
MC1004L	1.25	MC3004L	1.32
MC1008L	1.25	MC306P	1.44
MC1010L	1.25	MC3007P	1.32
MC1011L	1.25	MC3021L	2.15
MC1036L	12.50	MC301P	2.15
MC1037L	12.50	MC3060L	2.65
MC1352P	1.05	MC3062L	3.00
MC1406CP	3.95	MC4044P	2.20
MC1468L	2.90	MC14501CP	.31
MC1469R	2.50	MC14502CP	1.18
MC1510G	8.00	MC1407CP	.82
MC1514L	4.50	MC14510CP	2.40
MC1550G	1.50	MC14511CP	2.76
MC1558	4.37	MC14512CP	1.92
MC1595L	6.25	MC14519CGG	.94
MC1596G	3.31	MC14528CP	1.74
MC1723CG	1.25	MC4044P	4.80

POSITIVE
VOLTAGE REGULATORS $\begin{array}{ll}\text { LM340K-5 } & 1.95 \\ \text { LM340K-6 } & 1.95\end{array}$ LM340K-8 LM340K-12 LM340K-15 $\begin{array}{ll}\text { LM340K-18 } & 1.95 \\ \text { LM340K } & 1.95\end{array}$ LM340K-2
LM340T0-5 LM340T0 LM340T0-1 LM340T0-15 $\begin{array}{ll}\text { LM340T0-18 } & 1.75 \\ \text { LM340T0-24 } & 1.75\end{array}$ NEGATIVE
REGULATORS

JAPANESE CIRCUITS							
AN136	2.90	HA1312	4.05	STKO56	11.35	201P	6.40
AN203	3.75	HA1322	5.20	STK415	11.50	TA7203P	7.00
AN208	4.75	HA1339	5.20	TA7045M	3.50	TA7204P	6.50
AN210	3.10	LA1201	4.25	TA7054P	3.05	TA7205P	6.50
AN211	3.30	LA1364	4.70	TA7055P	5.50	TA78005M	2.50
AN214	4.90	LA1366	6.00	TA7060P	1.85	TA78005P	1.95
AN217	3.30	LA1367	5.90	TA7061P	2.25	TA78012M	2.50
AN229	6.35	LA3301	4.85	TA7062P	2.25	TA78012P	1.95
AN234	5.75	LA4030	4.85	TA7063P	2.25	TA78015M	2.50
AN239	6.50	LA4031P	3.50	TA7074P	4.90	TA78015P	1.95
AN241	3.20	LA4051P	4.65	TA7075P	4.90	TC9100P	12.00
AN245	6.50	LD3001	3.35	TA7076P	4.55	UPC16C	2.50
AN274	3.95	LD3080	4.00	TA7092P	6.50	UPC20C	5.00
AN277B	3.40	LD3120	3.10	TA7102	5.15	UPC41C	3.95
AN288	4.80	LD3141	2.40	TA7106P	3.25	UPC48C	3.95
AN328	4.05	M5112	5.40	TA7120P	2.20	UPC554C	3.90
AN343	3.90	M5115PR	4.80	TA7120P-C	2.20	UPC563H2	8.00
BA511	3.50	M5155	2.85	TA7122AP	2.30	UPC566H	2.25
BA521	3.95	SG613	5.40	TA7124P	1.85	UPC575C	4.10
HA1158	6.30	STK011	10.50	TA7146P	4.10	UPC1001H2	5.15
HA1159	6.60	STK015	6.50	TA7150P	4.55	UPC1020H	5.50
HA1202	3.10	STK025	12.50	TA7153P	6.90	UPC1025	5.50
HA 1306W	5.20	STK032	14.20	TA7200P	6.25		

IC's ON THE MOVE

BRD : BUCKET BRIGADE DEVICE
MM3001 19.50 MN3002 11.70 MM3003 9.45
$\begin{array}{lll}\text { HALL IC : DN834 } & 1.25 & \text { DN837 } 1.50 \\ \text { DN835 } & 1.35 & \text { DN838(NEW) }\end{array}$
SN76001 1.75 SN78002 1.95
PLLO2A MIDLAND PHASE LOCK LOOP 12.00

MICROPROCESSOR CHIPS					
1404A	3.25	2102	2.50	MM5013	3.25
C1702A	19.95	C2708	95.00	8008	19.95
2101	6.95	5 C4702A	18.95	8080A	29.95
MK4200 C5101-3 MC1451	11	4096x1 Blt Dyma	alc. Ram		9.95
		1024 Bit (258x4)	Static C-	Ram	4.50
		4 Bit Latch 4 to	6 Line D		4.25
	L	OR WRITE FOR	RTHER	RMATION	

CAREON RESISTORS
MInImum 5 Pc's Per Value

$\begin{array}{lllll}130079 & 4.00 & \text { IP20-0123 } 2.75 \\ 10\end{array}$ $1300821 \quad .85$ IP20-0131 2.50 $\begin{array}{lllll}13-0122 & 1.75 & \text { IP20-0141 } 3.00 \\ 13-0005 & 2.00 & \text { IP20-0142 } & 3.00\end{array}$ $\begin{array}{lllll}83-0005 & 2.00 & \text { IP20-0142 } & 3.00 \\ 83-0007 & 2.50 & \text { IP20-0139 } \\ 3-0008 & 2.00 & \text { IP20 }\end{array}$ $\begin{array}{lllll}83-0008 & 2.00 & \text { IP20-0154 } & 6.00 \\ 83-0015 & 3.00 & \text { IP20-0155 } 2.50 \\ & 1 P 20\end{array}$ | | | |
| ---: | ---: | ---: | ---: | ---: |
| P20-0005 | 3.00 | IP20-0161 4.00 |
| IP | IP20-0177 2.75 | | | IP20-0034 | .85 | IP20-0176 | 2.85 |
| :--- | ---: | :--- | ---: |
| IP20-0037 | .85 | IP20-0191 | .72 | P20-0045 2.00 IP20-0093 2.50

POPULAR JEDEC SEMICONDUCTORS

Same day shipment. First line parts only. Factory tested. Guaranteed money back. Quality IC's and other components at factory prices.
INTEGRATED CIRCUITS

1977 IC Update Master Manual
Brand new. Complete IC data Brand new. Complete IC data
selector from all manufacturers. selector from all manufacturers.
15,000 cross references. $\mathbf{\$ 3 0}$ 15,000 cross references. S30
with update service thru 1977. with update service thru 1977.
Domestic postage add 52.00 , Domestic posta
Foreign $\$ 6.00$.

8K Ram Board Kit - Plug compatible with Allair 8800 and Imsai 8080 - 91L02APG Low power 500 ns RAMS. All parts included with full instructions. $\$ 225.00$ 2K EPROM Board Kit $\$ 135.00$ I/O Board Kit $\quad \$ 44.50$

Not a Cheap Clock Kit \$17.45
Includes everything except Includes everything except
case. 2-PG boards. 6-.50" LED Displays. 5314 clock chip, transformer, all components and full instructions. Same clock kit with 80" displays

60 Hz Crystal Time Base Kit \$4.75
Converts digital clocks from AC line frequency to crystal time base. Outstanding accuracy. Kit includes: PC board. MM5369, crystal, resistors. capacitors and trimmer.

Frequency Counter Kit Covers audio, ultrasonic and low amateur band to 5 MHz typical Dual channel high sensitivity ± 25 millivolts. Crystal controlled clock. Can bs prescaled for higher frequency. 6-.50" digits. Full instructions. Less power supply. $\$ 40.00$

Digital Temperature

 Meter KitIndoor and outdoor. Automatically switches back and forth. Beautiful. 50" LED readouts. Nothing like it available. Needs no additional parts for complete, full additional parlill measure -100° to operation. Will measure $+200^{\circ}$, air or liquid. Very accu$+200^{\circ} F$, air or liquid. Very accu-
rate. Easy to build. $\$ 39.95$

COSMAC 'ELF'

hCA cmos mierocompuiar
Complete kit of parts to build Complete kit of parts to build
the "Elf" incl CDP 1802 and the "Elf" incl. CDP 1802 and users manual as listed in Aug. 76 Pop. Elect. minus power
supply and board. $\quad \$ 92.00$

TERMS: $\$ 5.00$ min. order U.S. Funds. Calif residents add 6% tax. FREE: Send for your copy of our 1977 BankAmericard and Master Charge accepted.

FREE SENd
OUEST CATALOG. Include 13ε stamp.

COLOR TV CHASSIS AND PARTS
 New 1976 moeld solid state Color TV

 chassis and parts for use with In-Line black matrix picture tubes. They have the following features: micro-circuit technology; energy save feature; one button color tuning AFC; and super low power consumption.We basicly have two chassis': the TS951 and TS953, usad to drive either $13^{\prime \prime}, 15^{\prime \prime}$ or $19^{\prime \prime}$ picture tubes. Parts to be added to make a complete TV include: UHF and VHF tuners (for $19^{\prime \prime}$); picture tube, tube shield; purity magnets; antenna; yoke; speaker; binding posts; cabinet; controls for $\mathbf{1 9}^{\prime \prime}$ (on-off and four-10K pots); and 2nd stage hi-voltage boost (for $13^{\prime \prime}$ and $15^{\prime \prime}$).
We don't have a complete package, but we do have some parts available at this time. Add a fow parts ... a TV for $1 / 2$ pricel $13^{\prime \prime}$ ' TV Chassis (with tuners \& controls). . . 6260175 . . $\$ 49.50$ 15" TV Chassis (with tuners \& controis). . . $6260174 .$. . $\$ 49.50$ 19" TV Chassis (no tuners, no controls) . . 6Z60172 . . \$29.50 VHF Tuner . 6Z60303 . $\$ 8.50$ UHF Tuner . 6260304 . $\$ 2.50$ Antenna . .5M100419 . . $\$ 1.50$ TV Speaker . 6Z60177. $\$ 3.50$ Binding Posts 4MI00442.\$1.50
INPUT/OUTPUT TERMINAL
These units were removed from a complex computer system. The terminal contains: ASC11 keyboard; CRT; drive circuits; and a complete 128 page tech. manual with operating and repair instructions, which makes it
 easy to modify the terminal for your applications. (Character generation unit was in a separate control device which is not supplied, but the terminal can be used in conjuction with charscter generator LSI chips, such as the 2513 or 2516).
The keyboard is ASC11 encoded, with a 50 key alpha-numeric (and others) block keyboard. The CRT displays up to 768 characters, depending on the desired size, approximately typewriter size up to $1 /{ }^{\prime \prime}$. Great for microprocessor in/ouput. Sh. Wt. 35 Lb . Order \# 6NB60336-\$49.50 ea., or 2 for $\$ 95.00$, 4 for $\$ 180.00$ B\&F ENTERPRISES

POSTAGE: Please add sufficient postage. 119 FOSTER STREET PEABODY, MA. 01960 Phone (617) 531-5774

SEND FOR OUR FREE CATALOG Over 4,000 electronic \& optical items

BELEET EEETEQICS

A special buy on a hish quality ultrasonic transducar allows us to offer Ahis kit at a super price - but hurry, quantities are limited You can
build intrusion alsmas, motion detecton, remote controls, echo ranging or liquid levei maasurement equipmant. We supply the basic transmitter and receivar electronies including a drilled and plated PC board. Tha units work at 23 KHZ with a range of 20 ft . and can be positionad opposite each other or side-by-side and bounced off a solid sur
will sink $u p$ to 300 ma to dive a relay, alarm circuit, atc.

ORDER US-01

AUTOMATIC TIME-OUT CIRCUIT for ultra sonic or mechanical switch alarms. Provides a five second entry delay. Sounds alarm for one minute, then re-arms itself. Requires 6-15VDC $\$ 3.95$

 THEF-TOCK SOUND MATCHES PENDULUM SWIHG - ELECTRONIC TOME CRIMES THE MOUR, (ie: 3 TIMES FOR 3 OCLOCK) - NUALITY COWPO MEMTS \& P.C. BOARDS , TRAMSFORMER IMCLUDED FOR 115 VAC- CA5E IS WOT IWCLUDED- SPEAKER SUPPLIED. ALL GOS IC COWSTIECTIOW

BUILD A COMPLETE CDI IGNITION KIT AT A FFAGTION OF THE COST OF OTHER UNITS. A special buy alfows us to
sell the complete kit at this low price! Up to 40,000 volts from your present ignition without changing the coit. Simple connections.
INCLUDES:

Special toroid transformer
Drifled and Plated board
Complete instructions
All semiconductors

(Does not include heatsink or case.) For 12 V negative ground

CIRCLE NO. 16 ON FREE INFORMATOY CNRO

$\overline{C B}$ ANTENNA PLANS - Assemble high performance
beams, quads, groundplanes, skipbeam and more from
common hardware - save 80% - easy, detaited, non-
technical instructions - complete $\$ 2.00$. Corona's Tenna-
form, 1117 Dewitt Terrace. Linden, New Jersey 07036.
MORSE-A-LETTER KIT - Decodes/displays Morse code.
See January "Popular Electronics". Complete parts kit
except chassis/cabinet $\$ 109.95$. Etched, drilled PC board
\$17.95. SELECT CIRCUITS. 1411 Lonsdale Road
Columbus, Ohlo 43227.
TAPE-SLIOE synchronizer, lap-dissolve, multiprojector
programmer plans, \$5.50. Free catalog. Millers, 1896
Maywood, S. Euclid, OH 44121.
ROBOT PLANS for $5-1 / 2 \mathrm{ft}$. tall radio controlled robot,
\$9.95. Free information. Americana Products, Box 11631,
Kansas City, MO 64138.
AMPLIFIER KITS! 35 watts output 0.5% THD. $\$ 15$ to:
Benchmark, 2149 Stuart St., Berekely, CA 94705.
SCIMP, $\$ 90$ builds this microcomputer. Uses surplus com-
ponents. Information \$1. NBL-E, Box 1115, Richardson Texas 75080.

Organs, Pianos, Strings Rhythms, PA Śystems 104-page catalog \$2 WERSI electronics, Inc Dept.A2, Box 5318 , Lancaster, PA 17601

TUBES

RADIO \& T.V. Tubes- 36 cents each. Send for free Catalog. Cornell, 4213 University, San Diego, Calif, 92105. TUBES receiving, factory boxed, low prices, free price list. Translateronic, inc., 1365 39th Street, Brooklyn, N.Y. 11218A, Telephone: 212-633-2800.
TUBES: "Oldies", Latest. Supplies, components, schematics. Catalog Free (stamp appreciated). Steinmetz, 7519PE Maplewood. Hammond, Ind. 46324.
RECEIVING TUBES. National Brands. Up to 80% discount. National Audio, 2500 Channing Road, Cleveland, Ohio 44118.

CIRCLE NO. 30 ON FREE INFORMATION CARD

For faster service
 USE ZIP CODE

HIGH FIDELITY

DIAMOND NEEDLES and Stereo Cartridges at Discount prices for Shure, Pickering, Stanton, Emplre, Grado and ADC. Send for free catalog. LYLE CARTRIDGES, Dept. P Box 69, Kensington Station, Brooklyn, Now York 11218. SAVE 50% build your own speaker system write: McGee Radio Electronics, 1901 McGee Street, Kansas City, Missouri 64108.

BURGLAR ALARMS

DIALING UNIT automatically calls police. \$29.95. Free security equipment catalog. S\& S Systems, 5619-C St. John, Kansas City, MO 64123. (816) 483-4612.

Burglar.Smoke Fire Alarm Cotalog

- Billions of dollars lost annually due to lack of protective warning alarms.

FREE CATALOG Shows you how to protect your home, business
 and person. Wholesale prices. Do-it-yourself. Free engineering service.

Burdex Security Co.

Box 82209 Dept. PE Lincoin, Ne. 68501

GOVERNMENT SURPLUS

$\overline{\text { MANUALS for Govt Surplus radios, test sets, scopes. List }}$ 50 cents (coin). Books, 7218 Roanne Drive, Washington, D.C. 20021.

GOVERNMENT SURPLUS. How and where to Buy in your area, send $\$ 2.00$. Surplus, 30177-PE Headquarters Building, Washington, D.C. 20014.

	PRINTED CIRCUIT EOAFD	TANTULUM CAPACITORS	Fưll Wave Bridges
	$4.1 / 2^{\prime \prime} \times 6.1 / 2$ " SINGLE SIDED EPOXY		PRV 2A 6A 25A
2518-HEX 32 日it SR ${ }^{\text {a }}$ 3.50	BOARD 1'16" thack, uniry cheid	diur 3nves 51 (0) 6.8UF 35V 351.00	$\underline{200}+1.75-1.25-2.00$
2102.11024 BT RAM S1.80	3.50 aд.	68UF 35V 5/S1.00 22UF 35V \$ 40	$400-1.95-1.50-3.00$
	7 WATT LD 65 LASER DIODEIA S895		600 1.20 1.75 4.00
MM5203 UV PROM. S 510.50		$3.3 \mathrm{UF} 35 \mathrm{~V} 4 / 51.00$ moger 35 V S 50	SANKEN AUDIO POWER AMPS
			Si 1010 C 10 WATTS. $\mathbf{S} 7.95$
MINIATURE MULTI.TURN TRIM POTS		M/001 ALARM CLOCK CHIP . . 55.75	Si 1050 G 50 WATTS. S27.95
	ER 900 TRIGGER DIODES 2N GO28 PHOG UJT	NATIONAL MOS DEVICES	CCO 110 LINEAR 256 XI BIT SELFSCANNNO CHARGED COUPLED
$\frac{5.75 \text { each }}{\text { MULT-TUR }}$	a PIN DIP SOCKETS . $\because \ldots .$.		
3010 style $3 / 16{ }^{\text {" }} \times 5 / 88^{* \times 1-1 / 4 " ; ~} 50.100$.	${ }_{16}^{14 \times 1 N \text { PIN DIP SOCKETS }}$ S		CCD 201-100×100 CHARGE COUPLED DEVICE 5135.00
$1 \mathrm{~K} .10 \mathrm{~K}, 50 \mathrm{~K}$ ahms ${ }^{\text {chen }}$	18 PIN OPP SOCKETS	MM5013 2.50 MM5061-2.50 STNGLE	
	24 PIN DIP SOCKETS 40 PIN OIP SOCKETS	MM5016-2.50 MM5555-4.75 M MM5017- FT.	COUPLEO DEVICE \qquad LINEAR CIRCUITS
	VERIPAX PC BOARD	MM5055-2.25 MM5210-1.95	 301/748-Hi Per. Op. Amp.
TRANSISTOR SPECIALS	This board is a $1 / 16^{"}$ sinyle sided paper epoxy board, $4 \% " \times 6 \%$ " DRILLED and ETCHED	MM5056-2.25 MM5260-1.2	
3585 NPN Si TO 66. S ${ }^{\text {S }}$. 95		TTL IC SERIES	
		7400-. 15 7442- 52 74126-. 40	301/748-Hi Per. Op. Amp. S S 39 320T 5.12, 15. or 24V NEG REG . . $\$ 1.25$
	power supply connector,	$\begin{array}{llll}74001-.15 & 7445-70 & 74151-.70 \\ 7402-15 & 744-70 & 74153-65\end{array}$	709 C Op. Amu … . . ${ }^{3} .31$
	MV 5691 YELLOW.GREEN	$\begin{array}{llll}7402-.15 & 7446-.70 & 7453-.65 \\ 7403-.15 & 7447-.70 & 74154-1.10\end{array}$	710 COMPARATOR \square s. 35
		$\begin{array}{llll}7403- \\ 7404-20 & 7448-.70 & 74155-.70\end{array}$	
2 N 3919 NPNSito.3 RF $\ldots . . .$. . ${ }^{\text {s }} 1.50$		7405-. 20 7450-. 20 74157-. 70	$\begin{aligned} & \text { CA } 3047 \text { HI Pef. Op. Amp......... } 95 \\ & 340 \mathrm{~T} 5,6,12,12,18,24 \mathrm{~V} \text { POS } \end{aligned}$
MPSA 13 NPN SL TO.92 $\ldots . . .3$ /s 1.00	AMber Large led's . . ea. s .20	$7406-25$ $7472-.33$ $74161-.85$ $7407-$.85 $7473-$.35 $74164-$ 55	REG. TO-220
	LEX PINS 1000151.00	$7407-$ $7408-.25$ $7474-.35$ $7464-.95$ 7465	LM 308 Oper. Amp.. Low Power .: s .95
	WATT ZENERS 3.9. 4.7. 5.6.8.2. 12.15		
		$\begin{array}{llll}7410-.15 & 7476-.35 & 74174-.95 \\ 7411-.20 & 7480-.35 & 74175-.92\end{array}$	S56-PUAL TIMER
	WATT ZENERS 4.7. 5.6. 10, 12, 15,	7412-. 20 7483-.70 74177-.79	LM $3900-$ OUAD OP. AMPLM 324 - CUAD 741
2N6109 PNP si TO.220. s s . 55		7413-.45 $7485-.88$	
${ }^{2 N 3638}$ PNP Si TO.5 5 /S 1.00	C6860 MODEM CHIP 13.00	$\begin{array}{llll}7414-.70 & 7486-.30 & 74181-2.10 \\ 7416-25 & 7489-1.85 & 74190-1.20\end{array}$	560 - PHASE LOCK LOOP $\ldots \ldots$. .
CIMOS (DIODE CLAMPED)	Slliconpowar Rectirers	$\begin{array}{llll}7416-.25 & 7489-1.85 & 74190-1.20 \\ 7417-.25 & 7490-.45 & 74191-1.20\end{array}$	561-PHASE LOCK LOOP
74C02-. 22 4015-. 95 4035-1.10	PRiV i $A^{-} 3 A^{-} 12 A^{-} 504$	$\begin{array}{llll}7420-.20 & 7491-.70 & 74192-.85 \\ 7425-28 & 7492-50\end{array}$	566 FUNCTIONGEN Si.
74C10-. 22 4016-.40 $4042-.78$	$100.06{ }^{10}$		
74001- 22 [2018-1.00 $404049-.40$	$\begin{array}{lllllll}200 & .07 & .20 & .35 & 1.15 & 4.25\end{array}$	7427-. 30 7494- 70	LM I310N FM STEREO DEMOD. , \$2.75 8038 IC VOLTAGE CONT. OSC. . $\$ 3.90$
4002-. 22 4019- .25 4050-. 40	$\begin{array}{llllll}400 & 09 & .25 & .50 & 1.40 & -6.50\end{array}$	$\begin{array}{llll}7430-.20 & 7495- & .70 & 7496-.88 \\ 7432-.25 & 7496-70 & 74257-1.25\end{array}$	LM 370 - AGC SOUELCH AMP. : S1. 15
$\begin{array}{llll}4006-120 & 4022-.95 & 4055-1.50 \\ 4007-22 & 4024- & 75 & 4066-80\end{array}$			
$4009-42$		$\begin{array}{llll}7438-.25 & 74121- \\ 7440-.168 & 74123-.65 & 7534-1.75 \\ 7549-65\end{array}$	
4010--.42 $4028-88804076-.70$	SILICON SOLAR CELLS	744- .85 74125-.40 75492-.65	1458 DUAL OP AMP. ${ }^{\text {a }}$.... . S 60
$\begin{array}{llll}4011-22 & 4029-1.10 & 4081- \\ 4012-.22 \\ 4030-.22 & 4520-1.15\end{array}$			
M013- 40		MINIATURE DIP SWITCHES CTS-206-4 Four SPST switches n one minidip peckaye. . . S1.75 CTS-206-8 Eight SPST switches in a 16 pin DIP prokage. . $\$ 1.95$	LM 382 - DUAL AUDIO PREAMP ${ }^{\text {S }} 1.50$
	. 4 V at 500 ma . . . $\$ 4.00$ ea., $6 / \$ 22.5$		
LED READOUTS			
			TRIACS SCRTS
		$\begin{aligned} & \text { AY-5. } 1013 \text {-A30K ser./par., par./ser., uni- } \\ & \text { versal UART. } . . . \quad . \$ 6.95 \end{aligned}$	Pry 1A -10A 25 A (1.5A -6A 35A
			$100 \quad .40 \quad .70 \quad 1.30 \quad .40 \quad .501 .20$
Send $25 t$ for our catalog featuring Transistors and Rectifiers		ALCO MINIATURE TOGGLE SWITCHES 	200.70 1.10-1.75-.60-. 70
			400 $\frac{1.10}{1.70}-1.60$ -2.60 2.30 $\frac{1.00}{3.60}-\frac{1.20}{1.50}-\frac{2.20}{3.00}$
Tarms: FOB Gambridge, Mass. Send Check or Monsy Order. Inctude Postage, Mininum 320.00	SOLID STATE SALES P.O. B0× 74A SOMERVILLE, MASS. 02143 TEL. (617) 547-4005		WE SHIP OVER 95\% OF OUR ORDERS THE DAY WE RECEIVE THEM

INSTRUCTION

LEARN ELECTRONIC ORGAN SERVICING at home all makes including transistor. Experimental kit-troubleshooting. Accredited NHSC, Free Booklet. NILES BRYANT SCHOOL, 3631 Stockton, Dept. A, Sacramento, Calif. 95820.

EARN ELECTRONICS DEGREE by correspondence. Free information bulletin. Grantham, 2000 Stoner Avenue, Los Angeles, California 90025.

BELL \& HOWELL Television Electronics Course. Best Offer. P.S.B., 49 Derby Ave., Orange, СT 06477.

SCORE high on F.C.C. Exams... Over 300 questions and answers. Covers 3rd, 2nd, 1st and even Radar. Third and Second Test, $\$ 14.50$; First Class Test, $\$ 15.00$. All tests, $\mathbf{\$ 2 6 . 5 0}$. R.E.I., Inc., Box 806, Sarasota, Fla. 33577.
UNIVERSITY DEGREES BY MAIL! Bachelors, Masters. Ph.D's. Free revealing information. Counseling. Box 389PE03, Tustin, California 92680.
SELF-STUDY CB RADIO REPAIR COURSE. THERE'S MONEY TO BE MADE REPAIRING CB RADIOS. This easy-to-learn course can prepare you for a career in electronics enabling you to earn as much as $\$ 16.00$ an hour in your spare time. For more information write: CB RADIO REPAIR COURSE, Dept. PE037. 531 N. Ann Arbor, Oklahoma City, Okla. 73127.
LEARN WHILE ASLEEP! HYPNOTIZE! Astonishing details, strange catalog free! Autosuggestion, Box 24-ZD, Olympia, Washington 98507.
GRANTHAM'S FCC LICENSE STUDY GUIDE - $\mathbf{3 7 7}$ pages, 1465 questions with answers/discussions - covering third, second, tirst radiotelephone examinations. $\$ 10.70$ postpaid. GSE, 2000 Stoner, Los Angeles, California 90025.

FREE Educational Electronics Catalog. Home study courses. Write to: Edukits Workshop, Department 722 D. Hewlett, N.Y. 11557.

 3. 16 RKK EYTE RAM BOARD $\$ 77.95$ 4. ${ }^{6}$ SLOT MOTTER BOARD $\$ 29.95$ 5. EXTENDER BOARD $\$ 46.50$

SPECIALS	
	${ }^{10250}$
	${ }_{2}^{2500}$
${ }_{76166} 889$	${ }_{80}^{99}$
${ }_{\substack{2 \\ 7446151}}$	${ }_{19} 9$
MH0	${ }^{10125} 5$
	(129

* ICMARKET PLACE
*

ALTAIR /AMSAI COMPATIBLE BK MEMORY

* NEW PRODUCTS

NEW FROM NEC Microcomputurt FIRST TIME OFFERED 0372 Floppy Disc Controiler Chip
D371 Mag. Tape Cossette Controller Chip Application Notes (26 gaspes). GI AY 3550 4K/ Digit DVM Chip
GI AY 3600 Keyboard Encoder Intersil 8038 Cc C AY3507
RO 32513 Char Gien

All nome
THE SNLE GK GOARD OSFERED TO TME
SCCS GROUP PUACHASE NOWO OFFERED
ScCS GROUP PURCHASE NOWOFFERED
TO YOU AT THE SAME LOW LOW PGICE! 5898.00 COMPLETE
\qquad

NEC 4096 RAM4.26

\qquad 1502F FIFO .. NEC 5101C-E CMOS RAM6.96 RO32513 CHAR GEN Lower Cisa ...14.85 WD 16718 ASTROS 29.95 WD 1941 OUAL BAUD GEN WD 1771 FLOPPY DISC CONT.74.95

SPECIAL

10022 PIN 4096 DYN RAM 3.25 | 100. 22 PIN 4096 DYN RAM 3.25 |
| :--- |
| 100.16 PIN 4096 OYN RAM |

6800 GB00
STARTER SET
STARTER SET Oniveractil Ant 315 soin

$\begin{array}{ll}\text { FCN GEN KIT } & \$ 18.5 \\ 63 \text { Key Keyboard } & 19.95\end{array}$ 63 Key Keyboard
19.95

Also . . . we stock entire continental specialties line new sockets and bus strips for microprocessor design
Experimenter 600 (. 6 spacing) $\$ 10.95$ Experimenter 300 (.3 spacing) 9.95

All shipments first class or UPS in U.S. or add 5° for shipping and handting. Minimum order $\$ 10,00$
California Residents add 6% tax. Foreign add 8%.

INTENSIVE 5 week course for Broadcast Engineers. FCC First Class license. Student rooms at the school. Radio Engineering Inc., 61 N. Pineapple Ave., Sarasota, FL 33577 and 2402 Tidewater Trail. Fredericksburg, VA 22401. PRACTICAL Electronic training. FCC license. Free home study catalog. Genn Tech., 5540 Hollywood Blvd., Los Angeles, CA 90028, Or, Ra-Tel Electronics, P.O. Box 167 "P" Toronto, Ont., Canada. U.S. Inquiries.
LEARN BASIC Digital Troubleshooting by corres pondence. Course includes text and demonstration mod ules. Educationa! Technologles, Box 224, Reynoldsburg, Ohio 43068.
BREAK INTO TVRADIO Broadcasting, Disc Recording career. Expert reveals secret avoiding disappointment, wasted time/money. Free information. Box 921, Beverly Hills, Calif. 90213.
HIGHLY EFFECTIVE Degree Program in Electronics Engineering. Advance rapidly! Our 31st Year. Free literature. Cook's Institute, Box 20345, Jackson, Miss. 39209.
FCC EXAMINATIONS? Go First Class! Complete First Third Questions - Answers plus "topical study" guide. \$8.00. "Guaranteed Exams", Box 5516-AC, Walnut Creek, CA 94596.
HIGHLY EFFECTIVE Degree Program in Electronics Engineering. Advance rapidly! Our 31st Year. Free literature. Cook's Institute, Box 20345. Jackson. Miss. 39209.
BECOME TELEVISION REPORTER without previous experience! New book by acclaimed newsman reveais short cuts to rewarding career. $\$ 6.00$ postpaid. Free brochure Station Break, Box 550, Bentonville, Arkansas 72712.

PERSONALS

MAKE FRIENDS WORLDWIDE through international correspondence. lliustrated brochure free. Hermes-Verlag, Box 110660/Z, D-1000 Berlin 11, Germany.
WARTS. Vergo ${ }^{\text {dr }}$ Cream is painless, saif, easy, gentie. Buy Vergo at better pharmacies.

INVENTIONS WANTED

INVENTORS: Manufacturers Need New Products. Free "Recommended Procedure," by a creative fee-based invention service company. Washington Inventors Service, 422-T Washington Building, Washington, D. C. 20005.

tape and recorders

RENT 4-Track open reel tapes_free brochure. StereoParti, P.O. Box 7, Fulton, CA 95401.
RECORDS-TAPES! Discounts to 73%; all labels; no purchase obligations; newsletter; discount dividend certificates; 100% guarantees. Free details. Discount Music Club, 650 Main St., Dept 5-0377, New Rochelle, New York, N.Y. 10801

WANTED

GOLD, Silver, Platinum, Mercury wanted. Highest prices paid by refinery. Ores assayed. Free circular. Mercury Terminal, Norwood, MA 02062.

SOLVE YOUR TEST CONNECTION PROBLEMS WITH EZ-HOOK

E-Z Hooks have been designed and field tested throughout the industry to save time and money in commercial electronic production and servicing. The spring-loaded hook attaches firmly, yet so gently it will not damage component - frees hands while testing. Durably constructed and fully insulated to a single contact point assuring true readings. Meets exacting laboratory and space age computer technology requirements. AVAILABLE IN 10 RETMA COLORS: Red, black, blue, green, orange, yellow, white, violet, brown or gray.

JUMPER, XL-1 MINI HOOK TO STACKING			
BANANA PLUG	Order No.	Length	Price
Specify color	$201 \times$ L- $-1 *$	$32^{\prime \prime}$	$\$ 1.95$

Specity color "Square hole tip for hooking laterally to feads or vertically over square wire-wrap pins.

MICRO-HOOK - TRY ONE AND YOU'LL WANT THEM ALL! COMPLETE SET (10) MICRO HOOKS - \$7.95 ORDER YOUR XM-S MICRO HOOK SET TODAY! (Jncludes 1 ea. red, black, blue, green, orange, yellow, white, brown, violet and gray
Micro Hook). At this low price you can afford more than one set.

SOCKETS

8 Pin	0.16	0.15	0.14	18 Pin	0.28	0.27
0.26						
14 Pin	0.19	0.18	0.17	20 Pin	0.34	0.33
0.32						
16 Pin	0.21	0.20	0.19	22 Pin	0.36	0.35

 Semiconductor Raplacement Guide/
21092/256 pgs

SANKEN HYBRID AUDIO POWER AMPLIFIERS SI-1010G (10W ourput) ... 56.90 SI-1020G (20W autput) $\$ 13.95$
SI-1050G (50W output)
$\mathbf{\$ 2 4 . 9 5}$ S1-1050G (50W output) . .. $\$ 24.95$
 level. $1 / 2 \mathrm{~dB}$ rasponse from eofficient heast radieting conatruction,
limiting (for SI-1050G) and ent - Single or split (dual) power supply. Rugged, compset and light SANKEN Serias hybrid amplifiers designed for Hi Fi , storeo, musical instrumbnts, public sddrass systems and other audio applications. Tha ampliflers
have quasi-complemantary class B output. The circult employs have quasi-complemantary class i 8 output. The circult amploys
flip-chip transistors with high raliability and passivated chip power thip-chip transistors with high reliability and passivatad
transistors with excellent secondary breakdown strangth.
e. MATSUO DIPPED TANTALUM CAPACITORS

$1^{\prime \prime}(26 \mathrm{~mm})$ GaAsP LED NUMERIC DISPLAY EP1000 (Common Anode) 3 Pcs - $\$ 13.00 \quad 5$ Pes - $\$ 19.00$
 114 PAGE APPLICATIONS MANUAL

Contains Circuit Data, System
Design and Technical Data Design and Technical Data
for SL 1600 saries integrate for SL 1600 serios integrated
circuits. $\$ 1.96$

Our $\begin{array}{llll}28 \text { PIn } & 0.44 & 0.43 & 0.42 \\ 36 \text { Pin } & 0.50 & 0.59 & 0.57\end{array}$ $\begin{array}{llll}28 \text { Pin } & 0.44 & 0.43 & 0.42 \\ 36 \text { Pin } & 0.59 & 0.58 & 0.67\end{array}$ 40 Pin 0.62
WIREWRAP

RESISTOR ASSORTMENTS
Esch assortment cantains 5 pcs each of 10 diff

74C00
SERIES CMOS

(A) ANCRONA

Minimum order $\$ 10.00$. Add $\$ 1.00$ to cover postage and handling. California Residents add $\mathbf{6 \%}$ sales tax Mail order - Send check or money order to: P.O. BOX 2208P, Culver City, CA 90230. COD, Master Charge and BankAmericard welcomed. (Stores do not accept mail or phone orders.) Books will be shiped by 4 th class rate.

CALIFORNIA
ANCRONA
11080 Jefferson Blvd.
Culver City, CA 90230
(213) 390-3595

CALIFORNIA	ARIZONA
ANCRONA	ANCRONA
1300 E. Edinger Ave.	4518 E. Broadway
Santa Ana, CA 92705	Tueson, AZ 85711
(714) 547-8424	(602) 881-2348

- Phone Order - Call:

OREGON	GEORGIA	641-4064
ANCRONA	ANCRONA	CANADA, B.C.
1125 N.E. B2nd Ave.	3330 Piedmont Rd., NE	ANCRONA
Portband, OR 97220	Atlanta, GA 30305	Vancouver, BC VSW 2Z4
(503) 254-5541	(404) 261-7100	(423) 324-0707

- ICS Socketed
- Push button Switches on Main PC Board
- Open chassis for Easy Assembly

2 IN 1 DMM-COUNTER

Size $10 \mathrm{~W} \times 3-1 / 2 \mathrm{H} \times 9 \mathrm{D}$
Meter: Auto polarity and overrange indicator. 11 Meg. Ohm input impedance. Four overlapping ranges on AC-DC volts and current to 1 KV and 1 AMP and five ranges on ohms to 1 Meg . Ohm. 500% overrange capability, except current. Accuracy: $\pm 1 \%, \pm 1$ count DC, $\pm 1.5 \%, \pm 1$ count AC and Ohms. Counter: Same as FCC-8.
CAPACITANCE COUNTER

NOW, IT IS MEASURE MOUR CAPACITORS.

Size $7 W \times 3 H \times 8 D$
$\pm 1 \% \pm 1$ count (± 1 pfd. below 100 pfd.) Four ranges from pico farads to several thousand microfarads. Features crystal timebase reference for stability. Auto cycling.

- Deluxe Metal Cabinet
- Complete Step-by-step Instruction \& Diagrams
- . 3 in. 7-Seg. LED Readouts

FREQUENCY COUNTER

Size 7W $\times 3 \mathrm{H} \times 8 \mathrm{D}$
Perfect for CBys, techmi technicians. Hi Z input, 50 MV sensitivity. Frequency 10 Hz to over 30 Mhz . (FC-6) and 100 Hz to over 250 Mhz . (FC-6H). Crystal timebase. 5 ppm.

Size $10 \mathrm{~W} \times 3-1 / 2 \mathrm{H} \times 9 \mathrm{D}$
Hi z input. Sensitivity 50 millivolts at 250 Mhz . Readout Hz., Khz., or Mhz. Resolution 1 Hz . to 10 Mhz . and 10 Hz above Crystal time base - 5 ppm.

Add \$2.50 Shipping/Handling Each California Residents Add 6\% Sales Tax

LTN COP. 15311 S. Broadway, Gardena, California 90248 (213) $532-8809$
CIRCLE NO. 37 ON friee information card

PLANNING TO

Let us know 8 weaks in advance so that you won't miss a single issue of POPULAR ELECTRONICS.
Attach old label where indicated and print new address in space provided. Also include your mailing label whenever you write concerning your subscription. It helps us serve you promptly.
Write to: P.O. Box 2772, Boulder, CO 80323, giving the following information:
\square Change address only \square Extend my subscription
ENTER NEW SUBSCRIPTION
$\square 1$ year $\$ 9.98$
\square Payment enclosed Allow $30 \cdot 60$ days for (1 extra BONUS issue) \square Bill me later

NEW ADDRESS HERE 0204
Name
please print
Address.
City
State
Sla Zip Addrtional posizage per year For Canada add $\$ 3$ For countries outsrte
U.S and Candare ado 55 -cash in U.S Curtency only

F-AFFIX OLD LABEL
me .S and Canada, add s5-cashinU.S currency on

EMPLOYMENT OPPORTUNITIES

ELECTRONICS/AVIONICS EMPLOYMENT OPPORTUN. ITIES. Report on jobs now open. Details FREE. Aviation Employment Information Service, Box 240E, Northport, New York 11768. ghone numbers count as one word.

OVERSEAS JOBS - NOW HIRING! High Pay! All Occupations. Transportation. Computerized Reports - $\$ 2.00$. TRANSWORLD, International Alrport, 3623-N, Los Angeles, Calif. 90009.
AUSTRALIA - NEW ZEALAND, WANT YOU!!! 50,000 Jobs! Transportation! Latest information, $\$ 2.00$. AUSTCO. Box 8489-N, Long Beach, Calif. 90803 .

DO-IT-YOURSELF

MODULAR TELEPHONES now available. Sets and components, compatible with Western Electric concept. Catalog 50 cents. Box 1147W, San Diego, California 92112.

TREASURE FINDERS

TREASURE may lie beneath your feet! Discover gold, silver, coins, rings, artifacts and more with world-famous, deeper-detecting White's metal detectors. From \$59.95. Dealers world-wide. Free literature! White's Electronics, Dept. PD7-C. 1011 Pleasant Valley Rd., Sweet Home, OR 97386.

SERIOUS COIN SHOOTERS - Semtech's solid-state METL-SENSOR pin-points ALL metal objects, yet defines the target before you dig. FOR FREE literature write: Semtech Corporation, 652 Mitchell Rd., Newbury Park, California 91320.

HOME ENTERTAINMENT FILMS

MAKE 77 A LUCKY YEAR - SPEND A FEW \$\$\$8 \& ENJOY LIFEI Order Super Bowl X (Steelers/Cowboys) Super 8 Color, $\$ 19.95$ delivered (you save $\$ 0.75$); B\&W $\$ 7.95$ del. (you save $\$ 1.95$). Operation Tall Ships - America's Bicentennial Celebration, 200 reel of beautiful Eastman color, $\$ 19.95+\$ 0.75$ shipping, or Super 8 mag color sound at $\$ 29.95+\$ 0.75$ shipping. Ali/Frazier 1, Murder in Venezuela, Standard 8 Eastman Color, 200 reel, $\$ 18.95$ PPD - can be shown on standard or dual 8 projector (you save \$1.75). Hitchcock's Psycho or Frenzy, thrillers for all times, home movie adaptation of feature films, $\$ 9.95 \mathrm{ea}+$ $\$ 0.75$ for Super 8 B\&W or $\$ 19.95$ ea PPD Super 8 mag sound B\&W. Or make your own selection from new $54-\mathrm{pg}$ Columbia glossy catalog, $\$ 1.00$ refundable with order; Castle catalog $\$ 0.50$ incl. order form; Sportite forms $\$ 0.35$. SPORTLITE, Elect-3, 20 N. Wacker, Cnicago, IL 60606.

MAGNETS

MAGNETS. All types. Specials-20 dise. or 10 bar, or 2 stick or 8 assorted magnets. $\$ 1.00$. Magnets, Box 192-H Randallstown, Maryland 21133.

CLASSIFIED ADVERTISING ORDER FORM

Please refer to heading on first page of this section for complete data concerning terms, frequency discounts, elosing dates, etc.

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25
26	27	28	29	30
31	32	33	34	35

WORD COUNT: 15 WORO MINIMUM. Include name and address. Name of city (Des Moines) or of state (New York) counts as one word each. Zip Code numbers not counted. (Publisher reserves right to omit Zip Code if space does not permit) Count each abbreviation, initial, single figure or group of figures or letters as a word. Symbols such as $35 \mathrm{~mm}, \mathrm{COD}, \mathrm{PO}$. AC, etc., count as one word. Hyphenated words count as two words. Tele-

MARCH 1977 ADVERTISERS INDEX

READER

ADVERTISER
PAGE No.
A P Products, Inc 12
Adva Electronics 133
Advanced IC Electronics . 127
Advanced Microcomputer Products 130
Allison Automotive 16
Ancrona Corp . 131
Antenna Specialist Inc 97
Aries Inc. 120
Associated Electronics 87
Avanti Research \& Development Co 111
B\&F Enterprises 126
B\&K Precision, Dynascan Corporation 103
B\&F Enterprises . 126
B\&K Precision, Dynascan Corporation 103
B\&K Precision, Dynascan Corporation 103
Bennies Warehouse Distribution Center 113
Bullet Electronics . 126

CREI Capitol Radio Engineering Institute.
$.90,91,92,93$

Cleveland Institute of

Electronics, Inc \qquad $70,71,7273$ Cobra, Product of Dynascan SECOND COVER Continental Specialties Corporation 1 Crown . . 9
Delta Products, Inc
Digital Concepts
. 31
Digital Group, The . 13 Digi-Key Corporation 129

EICO. 105
E\&L Instruments, Inc ..
Edlie Electronics 106
Edmund Scientific Co 134 Edmund Scientific Co .. 134 Electronic Book Club . 6 Empire Scientific Co

6
Godbout Elecs., Bill . 128 Grantham School of Engineering 112

Keath Company . $80.61,62$
Ignition Systems . 112
Illinois Audio.
.114
International Electronics Unlimited .. 122
James Electronics . 124, 125
Lin Corporation 132
McIntosh Laboratory Inc . 12

NRI Schools 34, 35, 36, 37
National Camera Supply . 1123
OK Machine \& Tool Corporation 27
Olson Electronics 122
Optoelectronics ... 120
PAIA Electronics . 112
Pickering \& Ca . THIRD COVER Poly Paks . . .
Quest Electronics . 126
Radio Shack 25
SAE.. . . 104
SBE, Inc.
S.D.Sales Co

Schober Organ Corp... 121
Sencore . 88,18 . 89
Shakespeare Company . 33
Shure Brothers Inc . ${ }^{7}{ }^{7}$
Solid State Sales.
.128
98

Sonaguard

Chnical Products Corporation
Speakerlab
Technology Trends 85
U.S.Pioneer . 10, 11 United Audio Products, Inc........ FOURTH COVER Vernitron .. . 110 Western Auto 85 ASSIFIED ADVERTISING $115,116,120,122,126,128,130,132,133$

I MADE $\$ 40,000.00$ Year by Mailorder! Helped others make money! Free Proof. Torrey, Box 318-NN, Ypsilanti, Michigan 48187.
FREE CATALOGS. Repair air conditioning, refrigeration. Tools, supplies, full instructions. Doolin, 2016 Canton, Dallas, Texas 75201.
MAILORDER MILLIONAIRE helps beginners make $\$ 500$ weekly. Free report reveals secret plan! Executive (1K3), 333 North Michigan, Chicago 60601.
GET RICH with Secret Law that smashes debts and brings you $\$ 500$ to $\$ 5$ Million cash. Free report! Credit 4 K3, 333 North Michigan. Chicago 60601.

$\underset{\substack{\text { HROFHLY } \\ \text { pROFIE }}}{ }$ ONE-MAN ELECTRONIC FACTORY

Investment unnecessary, knowledge not required, sales handled by professionals. Postcard brings facts about this unusual opportunity. Write today!
Barta. DP, Box 248, Walnut Creek, CA 94597.
FREE SECRET BOOK "2042 UNIQUE, Proven Enterprises" Fabulous "Little Knowns". Work home! Haylings-B, Carlsbad, Callf. 92008.
$\$ 193.00$ WEEKLY. GUARANTEED! Your home. One heur daily. Free details - Professional, Box 24543-X, Saint Louis, Missourl 63141.
HOW TO MAKE $\$ 2,000$ WEEKLY at home using other people's money. Guaranteed. Free Details. Richlieu, Box 25357, Dept. F3, Houston 77005.
GUARANTEED $\$ 1.000$ monthly. Work one hour daily. "FREE DETAILS!" Unicorn. ZD 1.7350 Nuget. Colorado Springs, CO 80911.
SOLICIT TECHNOLOGY, Mexican engineer wishes to have relations with fabricators of semiconductors or digital electronics products, to establish a new small industry. Write to: Jose Luis Garza, Apartado Postal No. 299 Col. del Valle, Nuevo Leon, Mexico.
NEW LUXURY Car Without Cost. Free Details! Codex-ZZ, Box 6073, Toledo, Ohio 43614.
BROADCAST STATION - FM or CABLE: Start your own! Excellent income, plus free tapes and records. Free details. "Broadcasting", Box 5516-AC, Walnut Creek, CA 94596.

STUFF ENVELOPES $\$ 250+/$ Thousand, supplies. Enclose stamped, addressed envelope. Enterprises, Route One, Box 263-E3, Pauls Valley, OK 73075

MUSICAL INSTRUMENTS

UP TO 60\% DISCOUNT. Nama brand instruments catalog. Freeport Music, 114 G. Mahan St., W. Babyion, N.Y. 11704.

REAL ESTATE

BIG...FREE. . . CATALOG! Over 2,600 top values coast to coas!! UNITED FARM AGENCY, 612-EP, West 47th, Kansas City, MO 64112.

BOOKS AND MAGAZINES

FREE book prophet Elijah coming before Christ. Wonderful bible evidence. Megiddo Mission, Dept. 64, 481 Thurston Rd., Rochester, N.Y. 14618.
POPULAR ELEC- Pyular Electrontics
TRONICS INDEX for 1975 now available. Prepared in cooperation with the Editors of "P/E," this index contains hundreds of references to product tests, construction projects, circuit tips and theory and is an

ANHNUAL INIEX 1975 essential companion to your magazine coliection. 1975 Edition, $\$ 1.50$ per copy. 1972, 73, and 74 editions also still available at $\$ 1.50$ each, or $\$ 5.50$ for the set of four (1972, thru 1975). Add $\$.25$ per order for postage and handling.
INDEX, Box 2228, Falls Church, Va., 22042

1977 PHOTOGRAPHY DIRECTORY

a BUYING GUIDE

The Directory lists over 3000 prod-ucts-still cameras, lenses, electronic flash, close-up equipment, slide proectors, darkroom equipment, movie cameras and projectors, film, and more-with complete facts and features. specs, prices, and exclusive PAGE SUPPLEMENT. Completo 16 PAGE SUPPLEMENT: Complete optical tests on 32 normal tenses-four each from eight major camera manufacturers-from the Popular Pho. tography Test Lab.
Order your copy from the Ziff-Davis Consumer Service Division, 595 Broadway, New York, N.Y. 10012. Enclose $\$ 2.25$ ($\$ 1.95$ plus 30 c postage and handling). Outside U.S.A. $\$ 3.00$, postpaid.
Residents of Calif., Colo., Fla., Ill., Mich., Mo., N.Y. State, D.C. and Tex. add applicable sales tax (postage and handling charges are non-taxable).

MIND-ABSORBING PROJECTS FOR
 ELECTRONIC EXPERIMENTERS
 AND HOBBYISTS

 1977 electronic EXPERIMENTER'S HANDBOOK Helps you get it together with a score of build-it-yourself projects.

This latest edition includes a host of exciting construction projects for audio buffs-Audio-Controlied Detailed Power Shut Off; 9-Channel Stereo Equalizer
. For fun and games-FLIP, a CMOS Logic Game; Sound Effects with the 555 IC Timer
Sound Effects with the 555 IC Timer How for ex-perimenter's-ESP Testing Machine; How to Make Double-Sided PC Boards; IC Digital Logic Memory Probe
Under- $\$ 30$ - for computer/calculator enthusiasts-An
Scientific Calculator: Microcomputer Under- $\$ 30$ Scientific Calculator; Microcomputer Primer; Bits-to-Dots Computer Video. There's a host of other projects including The Executive Digital emper Countdowner - Versatile Nickel-Cadmium Battery Charger Shirt-Pocket Metronome - Hall Effect Magnetometer Low-Cost Metal Locater 3-Way Photo Flash Tripper © The 99-cent Wonder ic © High-Value Electrolytic Capacitor Meter Guitar ound Intensifich PLUS: Microcomputer prod sistor Tester And more! PLUS: Microcomputer product buying guide and a basic digital logic course. All with complete construction pians, parts lists and printed-circuit board patterns. Many projects are unique designs not available elsowhere. Only $\$ 1.85$!

Ziff-Davis Publishing Co.
PE-377
Consumer Service Division
595 Broadway, New York, N.Y. 10012
Please send the 1977 ELECTRONIC EXPERIMENTER'S HANDBOOK. I'm enclosing $\$ 1.85$ ($\$ 1.50$ plus 35 c for postage and handling). Outside U.S.A. $\$ 3.00$, postpaid.
Residents of Calif., Col., Fla., III., Mich., Mo., N.Y. State, D.C. and Tex. add applicable sales tax (postage and handling charges non-taxable).
print name
address
city
state
zip

THE AUDIO AMATEUR-A quarterly publication for the serious audio constructor. Free prospectus. The Audio Amateur, Box 176Z, Peterborough, N.H. 03458.
BACK ISSUE MAGAZINES. 1890 to 1976. Free list. Send stamped envelope to Everybody's Bookshelf, Depi. PE, 317 West 6th, Los Angeles, CA 90014.
RADIO ASTRONOMY-The Radio Observer magazine. Sample $\$ 1.00$. The Peterson Press, 657PM Circle, Drive, Santa Barbara. CA 93108.

RUBBER STAMPS

RUBBER STAMPS, BUSINESS CARDS. Many naw products. Catalog. Jackson's, Dept. K, Brownsville Rd., Mt. Vernon. III. 62864.

miscellaneous

WINEMAKERS: Free illustrated catalog yeasts, equipment. Semplex, Box 12276P, Minneapolis, Minn. 55412.

OF TOMORROW . . TODAY!

And our FREE 164 PAGE CATALOG is packed with exciting and unusual values in electronic, hobby and science items - plus 4,500 finds for fun, study or profit. . . for every member of the family.
\qquad A BETTER LIFE STARTS HERE

KNOW YOUR ALPHA FROM THETA!

For greater relaxation, concentration, monitor your Alpha/Theta brainwaves w/ audible or visible signal on Biosone II. Has 3 feedback modes, out-

番 puts to monitor logic signal, her professional feats. of $\$ 200$-up units. Easily oper broad sensitivity control; other protessional feats. of $\$ 200-\mathrm{up}$ units. Easily oper
ated $4-\mathrm{lb}$. portable has total brainwave monitoring capability! 29 vtr . batteries No. 1668 AVA $\left(91 / 2 \times 5 \frac{5}{2} / 8 \times 414^{\prime \prime}\right)$ \qquad \$149.95 Ppd. LOW COST STARTERS' UNIT (PORTABLE)
No. 71,809 AVA $\left(41 / 2 \times 23 / 4 \times 414^{\prime \prime}\right)$ \qquad . $\$ 59.95$ Ppd.

SUPER POWER FOR ANY AM RADIO

New antenna assist turns a tiny transistor into a tiger, has pulled in stations up to 1000 miles away! Just set beside radio (no wires, clips grounding) and fine-tune Select-A-Tenna's dial to same frequency-and that's it! Great for clearing
 weak signals in radio depressed areas, off-coast islands, crowded frequency stations. Solid state-uses no electricity, batteries, tubes.
Stock No. 72,095AVA
.\$19.95 Ppd.
ULTRA SELECT-A-TENNA
No. 72,147AVA (*OVER 1000 MI.)
.\$24.95 Ppd.

3000 MI. POWER FOR AM RADIOS

remarkably clearer reception!
Get ball games from distant cities, your old home

town, up to 3000 miles away (subject to local conditions). Deluxe Ultrasensitive AM Antenna pre-amplifies signal before it goes into your hi-fi AM receiver or tuner inputs. Nulls interference. Great for marginal AM reception areas! Shielded ferrite attached; 110VAC. 60 cycles.
No. 72,263AVA (3 3/8 $\times 91 / 16 \times 11^{\prime \prime}$)
$\$ 177.50$ Ppd.

SAVE 50\%!

8 X 20 MONOCULAR

Fantastic bargain! Top quality Spy Scope, a $\$ 30$ value, now offered at $\$ 14.95$! Our special pur chase saves you 50% and you get 100% coated
 optics; 393 ft . field of view. Only 2 oz .-stores in pocket, purse, glove compartment. Fits in your palm-peer into hard-to-see places without letting subject know you're spying. Great for birders and race fans; incls. neck strap, leatherette $31 / 2 \times 11 / 2 \times 2^{1 "}$ case. Beautiful brushed metal finish. Buy two-one for a gift!
Stock No. 1568AVA
\$14.95 Ppd.

NEW! THE UNIQUE EDMUND 41/4", f/4 NEWTONIAN WIDE FIELD
 REFLECTOR TELESCOPE

Clear, bright, spectacular wide angle views of stars, moon, comets-and portable! See heavenly wonders! Sets up in seconds (pre-collimated, $31 / 2^{\circ}$ field of view gives you more stars in a single view than any other type 'scope! Bright, crisp vinew han dyy images. For sky eazing and earth finely resolved images. For sky gazing and earth gazing! Take it anywhere (only 1 adjustable carrying strap) in your lap, on a tripod; rotate the ing strap), in your lap, on a unt for use on a taspherical base on its own mount sy use on a table, car hood. Top quality optical system features F.L.); std. 28 mm Kellner eyepiece (15X). No F.L.); std. 28mm Kellner eyepiece (15X). No No 2001AVA .. $\$ 149.95$ Ppd.
other telescope like it. Bright Scharfanian red!

SEE MUSIC IN

 PULSATING COLORNew 3-Channel Color Organ adds to music listening pleasure, lets you modulate 3 independent strings of colored lamps with intensity of your music to create an audio "light show." They flash music to create an audio inght show. They flash, pitch, volume-pulsating lighting performance to musci! Fully assembled \& priced half that of others, the Edmund Sound To Light Control is a terrific value. Plug in, turn on!
No. 42,309AVA (ASSEMBLED)
.\$18.50 Ppd.
No. 42,336AVA (UNASSEMBLED)
\$15.95 Ppd.

For infra-red crime detection surveillance, security system alignment, I.R. detection, laser hecking nite wildlife study, any work req IR detection \& conversion to visible spectrum Self-cont sce incls. IR light source (90' nite visionl) 6032 IR converter Selfe $1 / 5$ obs 10^{\prime} to inf. 6 i2v DC Not avail to CA res. exc authd pers sci educ. No. 1683AVA ($11 \times 141 / 4 \times 3^{\prime \prime}$) CA res. exc. authd. pers. BINOCULAR STYLE: AS ABOVE, BUT 2.5X No. 1685AVA (SUPER BRIGHT I.R. EYE)
\$299.95 Ppd.
\$329.95 Ppd.

QUALITY DETECTOR

 UNDER \$40New Edmund-developed, fully transistorized BFO unit capable of locating quarter at $18^{\prime \prime}$-powerful 6 -trans. oscillator-amplifier circuit. Easily compares to others priced 50% higher! Aluminum pole and housing-not plastic! $6^{\prime \prime}$ waterproof search coil (Faraday shielded to elim. outside interference): long 50 hr . battery (9 V) life; ; powerful 2" speaker; 1-knob on-off tune control. Perfect balance; lightweight (2 lbs.). Great buy!
Stock No. 80,222AVA
$\$ 39.95$ Ppd.
SUPER-SENSITIVE TRANSMITTER/RECEIVER UNIT
No. 80,251AVA (OUR TR EARTH CHALLENGER) ... $\$ 69.95$ Ppd.

COMPLETE \& MAIL WITH CHECK OR M.O.

EDMUND SCIENTIFIC CO. 300 Edscorp Building, Barrington, N.J. 08007
How Many Stock No.

\square PLEASE SEND GIANT

FREE CATALOG "AVA"
Charge my \square American Exp.

\qquad

Signature

30-DAY MONEY-BACK GUARANTEE.
 You must be satisfied or return any purchase in 30 days for full
 Name
 Address
 City

 refund.
Two sources of perfection in stereo sound.

Match one to your equipment

"The right Pickering Cartridge for your equipment is the best Cartridge money can buy."

We've been saying that for years; and tens of thousands of consumers have profited by applying this principle in assembling their playback systems.

If you have a fine manual turntable, the XSV/3000 is a perfect choice.

If you have a high quality automatic turntable, then installing an $\mathrm{XV}-15 / 625 \mathrm{E}$ in its tone arm is a perfect choice.

The summary advice of Stereo's Lab Test, in an unusual dual product review, we think brilliantly states our position: "The XV-15/625E offers performance per dollar; the XSV/3000, the higher absolute performance level." That makes both of these cartridges best buys!

FREE!

Pickering's new XSV/3000 is a remarkable development. It possesses our trademarked Stereohedron Stylus Tip, designed to assure the least record wear and the longest stylus life achievable in these times with a stereo cartridge. Its frequency response is extraordinarily smooth and flat; its channel separation is exceptional; its transient response affords superb definition. It represents a whole new concept of excellence in stereo cartridges.

Read the whole evaluation report. Send for your tree copy of the Stereo "Lab Test"' reprint; write to Pickering \& Co., Inc., 101 Sunnyside Blvd., Plainview, N. Y. 11803. Department PE
". . in the same class with a number of more expensive products, including many of the direct-drive record players we have seen."

This quote, from the Hirsch-Houck Labs' report in Stereo Review, refers to the Dual 510, a semi-automatic belt-drive turntable. Since direct-drive models (especially our own) are accepted as the standard of performance, HirschHouck's comparison is not to be taken lightly.

The 510 also benefits from comparison with other semi-automatic turn-

Weillet someone else

 tables. Dual's unique sensor locates the 12 -inch and 7 -inch ? lead-in grooves for you. You don't have to guess where they are. And our belt-drive turntables "rees nowe wodeo the tonearm accidentally; the cue-control lifts it automatically at the end Re\& Erea of play and supports it until you release it.You might also compare the 510 with your present turntable, or any other you may be considering. When you do, keep in mind the 510's many other features and refinements described below. Your old records will sound better, your

Dual

 new ones last longer.United Audio Products, 120 So. Columbus Ave., Mt. Vernon, N.Y. 10553

Dual 510 . Semi-automatic, single-play. True four-point gimbal tonearm suspension. Synchronous motor, precision-ground belt, unique Vorio-pulley, dynamically-balanced platter. 6\% pitch-control, illuminated strobe. Lead-in groove sensor. Cue-control viscous-damped in both directions. Less than $\$ 200$.
Dual 502. Similar except less sensor, pitch-control and strobe. Less than $\$ 160$. Dual 1249, fully automatic
single:play/multi-play. Less than $\$ 280$.
True four-point gimbal centers and pivots
the tonearm mass at intersection of horizontal
and vertical axes. Tonearm is dynamically
balanced in all plones. The four needle-point
pivots are first hardened, then honed, o
process which produces microscopically
smooth surfoces. The precision boll-bearing
races are only 0.157 inch diameter.
Bearing friction: vertical < 0.007 gram;
horizontal, < 0.015 gram.
Stylus force, applied by long coiled spring
around vertical pivot, remains perpendicular
to record even if turntable is not level.

Unig Vario-pulley wsed in Dual's three belidifive models is procision-mackined for penfect concentricity ord boflante. Speeds ore of disted by expansion and con: wodion of pulley Circunterencer belp Thinver twited

[^0]: If you are in a hurry for your catalog please send the coupon to McIntosh.

[^1]: Trademark of CBS, inc

[^2]: HEATH
 Schlumberger

 ## Order Form/Agreement

 Heath Company, Depl. 10-271 Benton Harbor, Michigan 49022
 Please send me items checked below and include FREE \$7.95value Weller Soldering Iron (GDP-1105). (See Order Card)
 \square Send one course (checked below) whth the Experimenter/Trainer (ET-3100) at the special price of only $\$ 89.95$ plus $\$ 3.00$ shipping and handling.
 $\square D C$ (EE-3101) \square AC (EE-3102) \square Semiconductors (EE-3103) Send me the Electronic Circuits Course (EE-3104) with the Experimenter/Trainer (ET-3100) at the special price of only $\$ 99.95$ plus $\$ 3.00$ shipping and handling.
 \square Send all four of the courses above (EE-3101, 3102, 3103, 3104) with the Experimenter/Trainer at the special price of just $\$ 199.95$ plus $\$ 4.50$ shipping and handling.
 In addition, please send the following courses (less trainer):
 $\square D C$ (EE-3101) $\square A C$ (EE-3102) \square Semiconductors (EE-3103) for just $\$ 39.95$ plus $\$ 1.50$ shipping and handling each.
 \square Electronics Circuits (EE-3104) for just $\$ 49.95$ plus $\$ 1.50$ shipping and handling.
 \square Send me the Digltal Techniques Course (EE-3201) with its Experimenter/Trainer (ET-3200) for only $\$ 109.95$ plus $\$ 3.00$ shipping and handiing.
 \square Also send me that IM-17 VOM kit for just $\$ 32.95$ plus $\$ 1.50$ shipping and handling.
 Michigan residents add 4% sales tax. I enclose \square check \square money order for $\$$ \qquad ; or, Charge to my: \square BankAmericard Acct. No. Exp. Date \square Master Charge Acct. No. \qquad Exp. Date
 \square If Master Charge, include Code No.
 Signature: X
 Name (please print)
 ADDRESS
 CITY \qquad \square \square __ST STATE

[^3]: Have a problem or question on circuitry, components, parts availability, etc? Send it to the Hobby Scene Editor, popular electronics, One Park Ave., New York, NY 10016. Though all letters can't be answered individually, those with wide interest will be published.

[^4]: This address is for our product Free Information Service only. Editorial inquiries should be directed to POPULAR ELECTRONICS, One Park Avenue, New York, N.Y. 10016.

